

A Self-tuned Quality-Aware De-jittering Buffer Scheme

of Packetized Voice Conversations

Sofiene JELASSI, Habib YOUSSEF
Research Unit PRINCE, ISITCom

Hammam Sousse, University of Sousse, Tunisia
Sofiene.Jelassi@infcom.rnu.tn, habib.youssef@fsm.rnu.tn

Hugh MELVIN
Department of Information Technology

National University of Ireland, Galway, Ireland
hugh.melvin@nuigalway.ie

Abstract

Transport IP-based networks convey data packets toward
their destination with variable one-way network delays due to
their best-effort feature. Network delay variation of media
packets, known also as network delay jitter, crucially disturbs
the perceptual quality of packetized delay-sensitive services
such as VoIP, IPTV, and video conferencing. The media-
playing entity should seamlessly hide the perceptual effects due
to network delay jitter. Such a mechanism is often referred to as
de-jittering scheme, which should optimize the lateness-loss /
total delay trade-off.

In this paper, we describe a novel de-jittering algorithm for
VoIP packet streams. The algorithm accommodates a wide
range of network delay jitters. This is achieved with the help of
three self-tuned first-order filters of experienced one-way
network delays and delay variance. Following a new end-to-end
delay adjustment event, the de-jittering algorithm tunes for the
safety factor, which is used to calibrate the variance around the
estimated average network delay, in order to optimize the
perceptual quality for a given network condition. The
calibration process is performed using the recent history of
estimated one-way network delays. This enables to predict with
high accuracy the optimal end-to-end delay which will be used
till the next adjustment event. Simulation results of VoIPoW
(VoIP over wireless) show that our de-jittering algorithm
significantly outperforms the baseline de-jittering algorithm [5]
in terms of instantaneous and overall perceptual quality.

Keywords: VoIP, Network delay jitter, de-jittering buffer
schemes, perceptual quality

1. Introduction

The integration of delay-sensitive services such as VoIP and
IPTV over transport IP-based networks requires the
development of suitable protocols, architectures, and QoS
control algorithms. This class of services needs the reception of
each sent media unit before its expected playback instant, but

may tolerate some packet losses. However, unmanaged data IP
networks have been designed to deliver reliably in-sequence
delay-insensitive elastic traffic such as file, web, and mail
transfer. A significant effort has been made within
standardization bodies, academic institutions, and industry to
integrate packetized delay-sensitive services over data
networks. For instance, the IETF (Internet Engineering Task
Force) has defined a set of protocols to accommodate
multimedia services over Internet such as RTP, RTCP, SIP, and
SDP [1]. Other important effort has been made by the ITU
(International Telecommunication Union) and the ETSI
(European Telecommunication Standardization Institute)
organization bodies [2, 3].

Packetized Multimedia (including Voice) over IP service
increasingly replaces and extends circuit-switched telephone
service offered by Telecom providers in homes and enterprises,
a move often referred to as service network convergence [2, 3].
However delivery of media packet streams over IP transport
systems introduces new sources of impairments, which are not
found over ordinary telephone network, such as low bit-rate
CODECs, transcoding, packet loss, delay non determinism and
jitter. The low bit-rate coding schemes (video and audio),
which are used to minimize network congestion, significantly
influences the intelligibility of original content. Moreover,
VoIP service introduces new sources of delay such as framing,
queuing, processing, and buffering delays.

There are several remedies to prevent/reduce the perceptual
quality degradation of voice conversations carried over IP
networks. Basically, perceptual quality can be improved either
using network- and/or terminal- centric strategies. A network-
centric approach such as IntServ and DiffServ consists of
deploying adequate QoS mechanism at intermediate node to
satisfy delay-sensitive service class needs [4]. A terminal-
centric approach consists of well-engineering QoS control
algorithms at sender and receiver sides to properly deal with
incurred network impairments. For instance, the sender can
automatically switch its transmission rate and protection
mechanism according to the prevailing bandwidth and packet
loss behavior [5]. On the other hand, the receiver can passively
recover individual lost packets using packet loss concealment
technique and absorb delay jitter introduced by IP networks.

In this work, we focus on the de-jittering buffer schemes
used to remove jitter at the receiver side. Basically, a receiver-
based network delay jitter absorption scheme delays arrivals in
a buffer, referred hereafter to as de-jittering buffer. This allows
producing uniform spaced media packets, as generated at
sender side, which results in a faithful media reconstruction.
The buffered media units are sent to the decoder according to
their playback instants calculated by the de-jittering buffer
management algorithm, referred hereafter to as play-out
algorithm. The effective removal of network delay jitter
generally requires a set of statistical network measurements
such as one-way network delays (usually estimated) and delay
variance. In accordance, the end-to-end delay is properly
adjusted to optimize the perceptual quality for a given network
condition. The methodologies adopted by the play-out
algorithm to measure and process network measurements
significantly influence the performance of any jitter removal
scheme.

This paper describes a novel perceptual-based self-tuned
playback algorithm of VoIP packet stream. The proposed play-
out algorithm updates, upon the reception of a new packet,
three statistical measurements of the average network delay and
variance based on three self-calibrated first-order filters.
Following a new end-to-end delay adjustment event, the
proposed algorithm looks for the best safety factor, used to
calibrate the delay variance, which optimizes the perceptual
quality over the last active period. This predicts with high
accuracy the optimal end-to-end delay, for a given network
condition, which will be used till next adjustment event. Notice
that the vocal conversational perceptual quality is estimated
based on a single-ended parametric speech quality models.
Simulation results of VoIPoW (VoIP over Wireless) clearly
show that our proposed algorithm significantly outperforms the
baseline de-jittering algorithms in terms of achieved
instantaneous and overall perceptual quality.

The remainder of this paper is organized as follows: Section
2 surveys de-jittering algorithms used in the context of packet-
based voice conversations and highlights the difficulty
associated with calibration aspects. Section 3 presents our play-
out algorithm designed specifically to be self-tuning and
quality-aware. The evaluation of our play-out algorithm is
given in Section 4. We conclude in Section 5.

2. Tuning difficulty of jitter absorption
techniques

Typically, a play-out algorithm of a VoIP packet stream
adjusts dynamically the end-to-end latency to follow the current
trend of network delay and jitter (delay variance). Basically, the
adjustment of end-to-end latency is performed at the start of a

new talk-spurt1. This results in the expansion or compression of
the original silence duration [4]. It is well-recognized that such
a strategy efficiently hides to certain extent the disturbing
perceptual effect caused by de-jitter buffer dynamics. This class
of play-out algorithms, often referred to as per-talk-spurt
algorithms, has been extensively studied in the literature [4, 5,
6, 7]. Per-talk-spurt algorithms can be classified into predictive
and reactive de-jittering schemes [4]:

− Predictive approaches: They gather the history of a set of
statistical network measurements such as one-way network
delay, delay variation, and packet loss. Following a new
end-to-end adjustment event, predictive strategies estimate
the optimal play-out latency by treating the recorded
history. In our opinion, predictive approaches, which are
optimized for traces captured over wide area IP networks,
are unsuitable for VoIP conversations over dynamic
transport systems such as mobile heterogeneous networks.

− Reactive approaches: They use TCP-similar formulas to
estimate the current trend of network delay and delay
variation. The acquired statistical measurements are used at
a given adjustment instant to estimate the optimal end-to-
end delay for next active period. The baseline reactive
strategy described by R. Ramjee et al in [6] uses the
following expressions to update the average network delay
and delay variance:

n
ji,

n
1-ji,

n
ji, Tα)(1T̂αT̂ ×−+×= (1)

n
ji,

n
ji,

n
1-ji,

n
ji, TT̂ α)(1v̂αv̂ −−+×= (2)

where, n
ji,T

)
 and n

ji,T are the estimated and measured network

delays upon the reception of jth packet of nth talk-spurt triggered
upon the reception of the ith packet, n

ji,v̂ is the average of

network delay variation, and 0 ≤ α ≤ 1 is the auto-correlation
factor, referred hereafter to as filter-gain . The closer the value
of α to 1 (resp. 0) is, the larger (resp. smaller) is the influence
of previously sampled measurements relative to current
measurement. Figure 1 illustrates timing associated with played
voice packets.

Figure 1: Timing constraints of VoIP playback process.

1 The speech signal source during an interactive vocal conversation switches
between active, known as talk-spurt, and silence periods.

Sent
instants

n
pT

Playback
instants

Receive
instants

Talk-spurt n Talk-spurt n+1

1n
6,2is,T +

+
1n
6,3i s,T +

+

n
i,2p,T n

i,3p,T n
i,4p,T n

i,5 p,T
n

i,1p,T 1n
6,1i p,T +

+
 1n

6,1i p,T +
+

 1n
6,3i, p,T +

+
1n

pT +

Lateness
- loss

1n
6,1is,T +

+
n
i,1s,T n

i,2s,T n
i,3s,T n

i,4s,T n
i,5s,T

R. Ramjee et al recommended set the filter-gain α to
0.99802 which was obtained empirically [6]. This value was
only intended to smooth-out transient one-way network delay
variations in the estimation of mean network delay. To improve
the responsiveness of the fixed-gain baseline play-out algorithm
while filtering transient delay variations, R. Ramjee et al
proposed a second reactive strategy which uses two gain
factors, α and α’ to compute the average network delay (α’ < α)
[6]. This policy is intended to follow more closely and quickly
network delay variations. The performance of this strategy
remains close to the fixed-gain baseline strategy since it only
uses two fixed gains rather than a dynamic gain factor
computed at run-time for each received packet. Moreover, the
condition used to select the gain value does not allow filtering
adequately transient delay variation resulting in an extremely
reactive behavior [4]. This may result in a large end-to-end
delay adjustment which likely deteriorates the perceived
quality.

To avoid the critical influence of the gain factor on the
behavior of reactive playback strategy, R. Ramjee et al.
proposed a third policy which does not use a gain factor at all to
determine the mean network delay. It is more aggressive to
follow network delays by assigning the value of minimal
network delay observed over the last talk-spurt to the average
network delay. A fourth playback algorithm was designed to
deal with a pertinent feature of network delays observed over
wide area IP networks during packetized voice conversations.
Indeed, by probing network delay traces, R. Ramjee et al.
noticed the presence of delay spike that represents an
unpredictable raise followed by a linear decrease of one-way
network delays [6]. To properly account for such a pertinent
feature, authors equipped this playback policy with two modes:
Normal and Impulse. During Normal mode, the algorithm uses
the fixed-gain baseline algorithm, whereas during Impulse
mode the algorithm updates the average network delay without
using any gain factor. Two triggering conditions are defined in
order to switch from Normal to Impulse mode, and conversely.
Notice that these conditions may differ from one spike-aware
playback algorithm to another [7, 8]. The behavior of the spike-
aware playback policy remains identical to the fixed-gain
baseline algorithm under normal conditions. This algorithm
outperforms notably the baseline algorithm only for delay
traces characterized by a large number of spikes [6].

The above description proves the difficulty and the
relevance of filter-gain factor tuning and calibration process. In
reality, a magic static gain factor that performs well under all
network circumstances is not possible [9]. This observation has
motivated researchers to design new reactive de-jittering
algorithms which use a dynamic filter-gain computed at run-
time [9, 10, 11, 12]. The discrepancy between different
proposals stems from the method used to calculate the value of
filter-gain at run-time. As such, the average one-way network
delay and delay jitter are given by:

n
ji,

n
ji,

n
1-ji,

n
ji,

n
ji, T)α(1T̂αT̂ ×−+×= (3)

n
ji,

n
ji,

n
ji,

n
1-ji,

n
ji,

n
ji, TT̂)α(1v̂αv̂ −−+×= (4)

where, n
ji,α refers to the value of filter-gain at the reception of jth

packet of nth talk-spurt started at the ith voice packet. In [9], M.
Narbutt et al. proposed a de-jittering policy labeled α-adaptive,
which computes the filter-gain at run-time for each received
packet. To do that, authors build off-line an empirical function
which associates with each short-term average network delay
variation the suitable value of α. The precise form of the
developed function remains unknown since it is a subject to a
patent. Basically, a high value is assigned to α when the
playback process detects a low delay jitter inside the network.
However, a low value is assigned to α when the playback
process detects a high delay jitter inside the network.
Performance evaluation of α-adaptive policy showed that it
achieves better lateness-loss/total delay trade-off than
conventional reactive and predictive de-jittering schemes [9,
10].

Following the reception of the ith packet, which triggers the
start of a new talk-spurt, previously described reactive policies
calculate the value of next end-to-end delay as follows [6]:

n
i,1

n
i,1

n
p v̂βT̂T ×+= (5)

where, n
pT is the end-to-end delay which will be used for the nth

talk-spurt, β, known as the safety factor, is used to control
lateness-loss/total delay trade-off. The higher (resp. lower) the
value of β is, the larger (resp. smaller) is the end-to-end delay
and the lower (resp. higher) is the lateness-loss ratio. R. Ramjee
et al. recommended setting the value of β to 4. This value was
selected following an empirical tuning process using a set of
traces captured from a wide area IP network [6]. Hence, this
value will surely be unsuitable for other voice transport systems
such as last- and multi- hop wireless data networks. This
observation has motivated researchers to seek at run-time the
safety factor that likely optimizes the reactive de-jittering
policy performance for a given network delay behavior [13,
14]. As such, the end-to-end delay is calculated as follows:

n
i,1n

n
i,1

n
p v̂βT̂T ×+= (6)

where, βn is the value of safety factor used for the computation
of end-to-end delay of the nth talk-spurt. Basically, a small
(resp. large) value of β, i.e., below (resp. above) 4, is only
required when delay variance is high (resp. low) in order to
prevent excessive late arrivals while keeping the delay below
an acceptable range [13, 14]. Basically, there are two
approaches, which can be adopted to look for the suitable value
of βn at run-time:

(1) Function-based approach: The calculation of βn is based
on a pre-defined function which is developed off-line
based on a training process [12]. The network condition is
characterized using measures such as mean network delay,
lateness-loss ratio, or mean network delay jitter, which
may be used as input parameters of the developed
function. This strategy does not require recording one-way
network delay measurements, and hence preserves the
intrinsic assumption of reactive de-jittering policy.

(2) History-based approach: The calculation of βn needs the
processing of one-way network delay history. βn may be
assigned to the value which maximizes the perceptual
quality over the recorded history [13]. As such, the
resulting policy can be seen as a combination between
intrinsic features of reactive and predictive policies.

The empirical performance study undertaken by R. Ramjee
et al. and subsequently by L. Sun et al. of reactive policies
showed that each de-jitter algorithm is able to efficiently absorb
network delay jitter for a given network delay condition, e.g.,
low network delay/jitter [6, 14]. Guided by this observation, L.
Sun et al. proposed a playback algorithm which automatically
adopts the adequate reactive de-jitter policy according to the
prevailing one-way network delay condition [14]. H. Melvin
proposed a similar delay-aware playback strategy which
switches between the static and the baseline adaptive de-
jittering policies [4]. The selection of a de-jitter scheme is
performed according to the prevailing trend of network delay.
In our opinion, it is more suitable to concurrently run several
filters on incoming one-way network delay measurements. The
obtained statistical estimates of mean network delay and delay
variation can be subsequently useful to calculate the suitable
total delay for the next talk-spurt. In addition, we believe that a
de-jittering policy which uses reactive strategy to estimate
average network delay and delay variance and predictive
strategy to calibrate the safety factor will surely outperform
each de-jittering policy run alone, for all network delay
conditions. In fact, in such a case, the agility of reactive and
stability of predictive policies can be mixed to achieve optimal
prediction of network delay behavior, which results in the
maximization of users’ satisfaction for a given network
condition.

3. Self-tuned multi-filter perceptual-based de-
jittering buffer algorithm

To efficiently deal with a wide range of network delay jitter
conditions, especially observed over mobile networks, a flexible
de-jittering policy is required. Such a policy should properly
trade-off between agility and stability in the computation of
average network delay and delay variance measurements, used
to calculate the end-to-end delay. An agile de-jittering policy
will result in quick reaction to transient delay changes with
consequent significant expansion or compression ratio of the

altered silence period duration, and sometimes an overlap
between consecutive talk-spurts. This notably impairs the
intelligibility of presented voice stream [4]. On the other hand,
a stable reactive de-jittering policy will be unable to follow
closely and quickly the prevailing network delay condition.
This may lead either to a large lateness-loss arrival ratio, when
network delay is under-estimated, or needlessly large total
latency, when network delay is over-estimated. Notice that the
agility/stability of a per-talk-spurt delay jitter removal
algorithm is also linked to a set of configuration parameters
used by the voice application such as hang-over duration,
packet duration, and Voice Activity Detection (VAD)
algorithm [4].

To achieve adequate agility over dynamic networks, we
develop a new playback policy which updates the average
network delay and delay variance based on three adaptive-gain
first-order filters proposed and studied in [15]. The filter-gain is
calculated using glass-box explicit mathematical expressions,
unlike black-box empirical functions. These filters have been
developed for the provision of accurate prediction of network
statistical measures such as network delay and short-term
available bandwidth over mobile networks. Upon the reception
of a new arrival, each filter separately updates and maintains its
estimation of average network delay and delay variance. The
first-order and adaptive value of the gain factor constitute the
intrinsic common features of all used filters. They differ in the
method used to compute the value of filter-gain. The
operational mode of the adopted three filters can be
summarized as follows:

(1) Flip-flop Filter (FF): It uses two static-gain first-order
moving average filters to update the average network delay
and delay variation estimates. The first (resp. second) filter,
that has a static-gain value equal to 0.1 (resp. 0.9), is agile
(resp. stable). The FF filter is somehow similar to the
second policy described in [6], but differs in the condition
used to switch between agile and stable filters. Upon the
reception of a new one-way network delay measure, the FF
filter selects the agile or stable filter to update average
network delay and delay variation using an adapted version
of control chart algorithm [15].

(2) Stability Filter (SF): It dynamically adapts the value of
filter-gain according to network instability. The SF filter
was conceived to smooth-out the calculated averages of
network delay and delay variance estimates, when the
network delay exhibits an unstable behavior. As such, a rise
of network instability, detected through consecutive
divergent network delay measures, entails an increase of
filter-gain. This behavior makes the filter more stable,
which lead to efficiently filter-out transit delay variation.
The raw network instability is measured upon the reception
of ith packet, as follows:

1-i
net

i
neti TTS −= (7)

where, i
netT refers to the encountered network delay of ith

packet. The raw instability measures of Si are smoothed as
follows:

() i1-ii Sδ1ŜδŜ ×−+×= (8)

where, iŜ is the filtered measure of network instability

calculated upon the reception of ith packet and δ is a static

smoothing factor. The greater the value of iŜ is, the higher

is the network instability. M. Kim et al. recommended,
following an empirical study, to assign the value 0.6 to δ
[15]. The filter-gain of SF filter, αi, is computed upon the
reception of ith packet, as follows:

max

 i
i S

Ŝ
α = (9)

where, Smax is the maximal value of Si over the ten most

recent samples. The closer the value of iŜ to Smax is, the

closer the value of αi to 1. As such, the filter output will
become more stable during periods characterized by a high
instability.

(3) Error-based Filter (EF): It dynamically updates the filter-
gain according to the prediction error between estimated
and measured one-way network delays. Basically, a higher
(resp. lower) filter-gain value is used when the estimates
network delays exhibit a good (resp. bad) precision with the
measured ones. The prediction error is given by:

i
net

1i
neti TT̂E −= − (10)

where, 1-i
netT̂ is the EF filter output calculated upon the

reception of packet number i-1. The raw prediction error
measures are smoothed, as follows:

() i1ii Eλ1ÊλÊ ×−+×= − (11)

where, iÊ is the filtered prediction error measure upon the

reception of ith packet and λ is a smoothing factor set to 0.6.
The filter-gain of EF filter is calculated as follows:

max

i
i E

Ê
1α −= (12)

where, Emax is computed in a similar way to Smax. As we can
see, the lower the prediction error value is, the closer is the
value of αi to 1, which assures filter stability. A high
prediction error value results in a decrease of the filter-gain,
which allows a fast convergence to actual one-way network
delay trend.

Upon the detection of a new talk-spurt, three estimates of
average network delay and delay variance are available. As
such, the estimated end-to-end delay of next talk-spurt can be
calculated for each filter as follows:

 n
i,1f,n

n
i,1f,

n
pf, v̂βT̂T ×+= (13)

where, n
pf,T is the end-to-end delay calculated based on filter f

which belongs to the set {FF, SF, EF}. n
i,1f,T

)
and n

i,1f,v̂ are the

produced estimates by the filter f of average one-way network
delay and delay variance. βf,n is the value of the safety factor
which is dynamically calculated for each filter f at the start of
the nth talk-spurt. The selection of suitable value of βf,n is based
on the maximization of the conversational perceptual quality
for a given network delay history.

Typically, the conversational quality is quantified using the
MOSc (Mean Opinion Score), which varies between 1
(unacceptable quality) and 5 (excellent quality) [16]. The MOSc
is affected by the network and lateness packet loss ratio and
end-to-end delay. The smaller the total packet loss ratio and
delay are, the better is the conversational quality. In reality,
packet lateness-loss ratio and total delay are tightly linked since
an increase of total delay leads to a reduction of packet
lateness-loss ratio, and conversely. In our case, a decrease of
βf,n entails a decay of total delay at the expense of a potential
increase of packet lateness-loss ratio, and conversely. Figure 2
illustrates the effect of varying the value of safety factor βf,n on
MOSc. The curve trend can be explained as follows, when the
value of the safety βf,n is too low then roughly all voice packets
are ignored. This leads to a very poor listening perceptual
quality. A gradual increase of βf,n results in decrease of
lateness-loss packet ratio, which entails an improvement of
listening perceptual quality. However, beyond a certain
threshold, the total delay becomes excessively large which
significantly degrades the quality of interaction without a
significant improvement of listening perceptual quality. As
such, the goal of our network delay jitter removal policy is to
assign for each filter the value that maximizes the MOSc to βf,n.
Notice that such a strategy requires recording network delay
history, which constitutes the intrinsic feature of predictive de-
jittering policy.

Figure 2: Inherent trend of the conversational perceptual quality

scores, MOSc, as a function of βn.

As we can see, there is a requirement to quantify
automatically the MOSc to determine the suitable βf,n. Several
conversational speech quality estimate models have been
reported in the literature [14, 17]. In this work, we use the no-
reference parametric speech quality estimate model developed
by K. Fujimoto et al. [17]. This model assumes that the
perceptual annoying effect due to total packet loss and delay
are additive in psychological scale. It has been calibrated for
the standard widely-used ITU-T speech CODEC G.711, but can
be extended to cover other CODECs. The MOSc for a given
packet loss ratio and end-to-end delay is obtained as follows:

MOSc (PLR, d) = 4.10 − 0.195×plr + 2.64×10-3d − 1.86×10-5d2
+ 1.22×10-8d3 (14)

where, PLR is the total packet loss ratio and d represents the
end-to-end delay. At the start of a new talk-spurt, the developed
algorithm seeks, for each filter, the value of βf,n that maximizes
MOSc. The input parameters, namely total packet loss ratio and
delay, of speech quality estimate model given in (14) are
calculated for each value of βf,n using the history of recorded
network delays. Upon the detection of a reduction of the MOSc
following an increase of βf,n, our playback policy switches off
the tuning process and records the optimal value of the safety
factor. The history contains experienced one-way network
delays over the last T seconds. The duration of history can be
either static or dynamic. In this work, we use the static interval
set to 9 s. By the end of the history-based auto-tuning process,
three optimal MOSc scores -- one value per filter -- will be
available for the de-jittering algorithm. Obviously, our
developed policy selects the configuration, i.e., the average
network delay, delay variance, and safety factor, which
optimizes the MOSc. Notice here that the designed algorithm is
CODEC aware since the calculation of the end-to-end delay
depends on the speech quality estimate model which is specific
for each CODEC.

Algorithm 1 summarizes our developed auto-tuned de-
jittering policy. Basically, the algorithm records the one-way
network delay history using a rolling list which keeps the recent
observations. The average network delay and delay variance are
separately updated using each filter. At the occurrence of a new
talk-spurt, the playback algorithm seeks the safety factor that
optimizes the perceived quality for each filter over the recorded
history. After obtaining the best safety factor for each filter, our
developed algorithm selects the total latency that maximizes the
perceptual quality among all available MOSc scores.

4. Performance evaluation

In order to investigate the performance of our designed
playback policy over mobile network, we simulate the
configuration illustrated in Figure 3 using NS2 [13]. The
simulated test-bed includes two access points used to bridge
between wired and wireless worlds. End nodes are attached and

served by one access point at a given instant. The access points
are linked using an existing infrastructure which includes one
core router and two high capacity wired links (see Figure 3).
The wireless interface data rate is set to 2 Mbps. Thus, the
wireless link constitutes the bottleneck of all established
connections. The distributed access protocol IEEE 802.11b is
used in order to resolve contentions. All mobile nodes are
assumed to remain stationary during a simulation run.

Algorithm 1 : Self-tuned quality-aware de-jittering policy

n
pf,T : The nth total latency calculated based on the filter f

n
ji,f,T̂ : The average network delay calculated using the filter f at the

reception of jth packet of nth talk-spurt started at ith packet
n

ji,f,v̂ : The average delay variance calculated using the filter f at

the reception of jth packet of nth talk-spurt started at ith packet
INC: The increment amount of the safety factor βn

H: A rolling list of one-way delay history
opt[3]: An array containing optimal score achieved by each filter
Beta[3]: An array containing optimal safety factor for each filter
FF: Flip-Flop filter, SF: Stability Filter, EF: Error-based Filter
βmin and βmax are the lower and upper thresholds of βn

LossRate (): A function which returns the number of ignored
packets for a given network delay history and a playback latency
MOSc(): A model estimating the conversational perceptual quality
MaxIndex(): A function which returns the index of the maximal
value of a given array of floats

1. for each received packet do
2. if (new talk-spurt == FALSE)
3. update the history of network delay H
4. for each filter f ϵ {FF, SF, EF} do
5. update the weighted network delay and variance
6. end for
7. else
8. for each filter f ϵ {FF, SF, EF} do
9. Beta[f]← βmin, score ← 1
10. do
11. opt[f] ← score
12. n

pf,T ← n
i,1f,

n
i,1f, v̂Beta[f]T̂ ×+

13. PLR ←LossRate (H, n
pf,T)

14. score ←MOSc(PLR, n
pf,T)

15. Beta[f] ← Beta[f] + INC
16. until (score <= opt[f] or βn ≥ βmax)
17. end for
18. f ← MaxIndex (opt)

19. n
pT ←

n
f,i,1T̂ + Beta[f] ×

n
i,1f,v̂

20. Initialise H
21. end if
// Playback instant of jth packet of nth talk-spurt started at ith packet
22. n

p
n

ji,s,
n

ji,p, TTT +=

23. end for

Figure 3: Hybrid wired/wireless simulated test-bed.

A bidirectional voice conversation is established between
the two VoIP terminals included in the test-bed (see Figure 3).
Voice streams are synthesized using an ON/OFF model which
imitates a realistic packet-based voice source when a voice
activity detection algorithm is used. The data rate at application
level is equal to 64 kbps in order to mimic the output of the
CODEC G.711. The packet duration is set to 20 ms which
implies a payload size equal to 160 bytes and packet rate equal
to 50 packets / second. The voice conversation lasts for 250 sec.
Two background stations are used in order to increase the
network workload. Background traffic is sent toward the wired
sink node from the start to the end of the simulation run. The
intensity of background traffic has been varied according to
packet size, which was varied from 500 to 1500 Bytes, and
maximal TCP tolerable window size, which was varied from 5
to 30 packets. Figure 4a illustrates the incurred one-way
network delays when background traffic is disabled. However,
Figures 4b and 4b illustrate the effect of different injected
background traffic intensities on one-way network delay. From
Figure 4a, we can observe that voice packets reached the
receiver side roughly instantaneously without notable network
delay jitter. Figures 4b and 4b illustrate the incurred one-way
network delay when background traffic is enabled. In such
conditions, voice packets sustain high one-way delays and
delay variations. This is due to the best-effort property of the
transport network. In addition, the examined VoIP voice
packets travel through two wireless hops which increase
dramatically the network latency. Moreover, the packet size of
background traffic is relatively long (> 500 bytes) which
blackouts the wireless channel for a significant duration.

(a) (b) (c)

Figure 4: The effect of background traffic intensity on network
delay variation

Figure 5: Influence of background traffic on VoIP packets.

As such, voice packets are enforced to wait for a long
duration either at the mobile node interface or at the
transmission queue of the access point. Moreover, the
background traffic attempts to efficiently use the available
bandwidth which will quickly saturate the wireless channel.
Further, the acknowledgment packets sent by sink node
increase the cell load and results in contentions with voice
packets as well as background data packets. Figure 5 shows the
effect of different background traffic intensities on packet loss
ratio and mean one-way network delay and jitter. Figures 6a
and 6b illustrate the behavior of the baseline policy, where the
gain value is set to 0.99802, and our self-tuned de-jittering
policy. Figure 6 clearly shows that our self-tuned play-out
algorithm follows more closely network delay variations than
the baseline playback algorithm. The self-tuned and baseline
playback algorithms entail an overall lateness-loss ratio equal
to 32.13% and 10.10%, respectively. On the other hand, the
self-tuned and baseline playback algorithms entail a mean total
delay equal to 761 ms and 1105 ms, respectively. The reduced
packet lateness-loss ratio achieved by the baseline playback
algorithm is performed at the expense of a dramatic increase of
total delay. This total delay exceeds significantly the tolerable
one-way delay in the context of conversational services
(<400ms). Figure 7 gives the instantaneous perceptual quality
achieved by the self-tuned and the baseline playback
algorithms. The perceptual quality is estimated using an
adapted version of ITU-T E-Model which produces as output a
rating factor varying between 0 (bad quality) and 100
(Excellent quality) [10]. The assessment period duration is set
to 10s. These curves prove that the self-tuned play-out
algorithm improves considerably the perceived quality over
time. Moreover, our self-tuned policy achieves a better overall
rating factor at the end of the voice conversation (see Figure 7).

(a) Baseline playback algorithm (b) Self-tuned playback algorithm

Figure 6 : Behavior of our self-tuned de-jittering policy compared
with the baseline policy (background packet size = 1500 bytes).

Background
station

VoIP terminal

Core router

Access Point 1 Access Point 2

VoIP terminal

Sink node

Background
station

Figure 7 : Instantanoeus and overall perceptual qualiy of

self-tuned and fixed play-out algorithms.

The pie charts depicated in Figure 8 illustrate the user
satisfaction throughout the packet-based voice conversation.
These charts are produced based on the perceptual contour
concept described in [10]. Plotted pie charts shows that the self-
tuned playback algorithm outperforms the baseline playback
policy at perceptual level. For instance, the baseline de-jitter
algorithm produces a poor perceptual quality during 94% of the
voice conversation duration, whereas the self-tuned play-out
algorithm reduces this ratio to 46% of the studied voice
conversation.

5. Conclusion and future work

In this paper, we presented a new de-jittering algorithm of
packet-based voice conversations. The designed play-out
algorithm has flexibility to cope with a wide range of delay
jitters observed over mobile networks. It concurrently uses
three adaptive-gain first-order filters to calculate the optimal
end-to-end delay. At the occurrence of an adjustment event, it
self-tunes at run-time the safety factor that likely optimizes the
perceived quality. Simulation results of VoIPoW show that our
de-jittering algorithm outperforms the baseline fixed-gain and
safety factor de-jittering policy at perceptual level. The
obtained results exhibit that contention delay and jitter
constitutes a potential source of quality degradation (through
both playout delay and late packet loss) which should be
properly reduced using dedicated algorithms and protocols. The
delay-sensitive feature of packet-based voice conversations
should be considered by access as well as core nodes especially
in wireless environments. This will be investigated further in
our future work as we examine the contribution that QoS
enabled protocols such as 802.11e can make.

Reference
[1] H. Schulzrinne, http://www.cs.columbia.edu/~hgs/, [on-line] Personal

Website, visited in March 2009.

[2] European Telecommunications Standards Institute (ETSI),
http://www.etsi.org/, [on-line] visited in March 2009.

[3] International Telecommunication Union (ITU-T), http://www.itu.int/,
[on-line] visited in March 2009.

[4] H. Melvin, “The use of Synchronized Time in Voice over Internet
Protocol (VoIP) Application”, PhD dissertation, University College
Dublin, October 2004.

(a) Baseline playback algorithm (b) Self-tuned playback algorithm

Figure 8 : Overall user satisfaction throughout the voice conversation.

[5] C. Hoene, “Internet Telephony over Wireless Links”, PhD dissertation,
Technical University of Berlin, Germany, December 2005.

[6] R. Ramjee, J. Kurose, and D. Towsley, and H. Schulzrinne, “Adaptive
Play-out Mechanisms for Packetized Audio Applications in Wide Area
Network”, in Proceedings of IEEE INFOCOM, pp. 680-688, Toronto,
Canada, 1994.

[7] S. Moon, J. Kurose, and D. Towsley, “Packet Audio Play-out Delay
Adjustment: Performances bounds and Algorithms”, ACM/Springer
Multimedia Systems, Vol. 6, pp. 17-28, January 1998.

[8] P. Hu, “The Impact of Adaptive Play-out Buffer Algorithm on Perceived
Speech Quality Transported over IP Networks”, Master thesis report,
School of Computing, Communication and Electronics, University of
Plymouth, September 2003.

[9] M. Narbutt and L. Murphy, “VOIP Play-out Buffer Adjustment using
Adaptive Estimation of Network Delays”, in Proceedings of 18th
International Tele-traffic Congress (ITC-18), pp. 1171-1180, Berlin,
Germany, September 2003.

[10] M. Narbutt, A. Kelly, L. Murphy, P. Perry, “Adaptive VoIP Play-out
Scheduling: Assessing User Satisfaction”, IEEE Internet Computing
Magazine, July/August 2005, pp: 18-24.

[11] A. Kansal and A. Karandikar, “Adaptive delay estimation for low jitter
audio over Internet”, in Proceedings of IEEE Global
Telecommunications Conference, (GLOBECOM 01), vol.4, pp: 2591 -
2595, 2001.

[12] Daniel R. Jeske, W. Matragi, B. Samadi, “Adaptive Play-Out Algorithms
for Voice Packets”, In Proceedings of IEEE International Conference on
Communications (ICC 2001), vol. 3, pp:775-779, Helsinki, Finland,11-
14 June 2001.

[13] Y. Jung and J. W. Atwood, “β-Adaptive Play-out Scheme for Voice over
IP Applications”, IEICE Transactions on Communication, vol.E88–B,
no.5, May 2005 (LETTER).

[14] L. Sun and E. C. Ifeachor, “Prediction of Perceived Conversational
Speech Quality and Effects of Playout Buffer Algorithms”, In
Proceedings of IEEE International Conference on Communications (ICC
2003), vol. 1, pp:1-6, 11-15 May 2003

[15] Kim M. and Noble B., “Mobile Network Estimation”, in Proceedings of
the ACM Conference on Mobile Computing and Networking, Rome,
Italy, June 2001.

[16] A. Rix, J. Beerends, D. Kim, P. Kroon, and O. Ghitza, “Objective
assessment of speech and audio quality: Technology and Applications”.
IEEE Transactions on Audio, Speech, and Language Processing, Vol. 14,
No. 6, pp. 1890:1901, November 2006.

[17] K. Fujimoto, S. Ata, and M. Murata, “Adaptive Play-out Buffer
Algorithm for Enhancing Perceived Quality of Streaming Applications”,
in Proceedings of IEEE Globecom 2002, Nov 2002.

[18] K. Fall and K. Varadhan, “The ns Manual”, VINT Project, November
2001.

48.24R

53.59R
gainfixed

callofend

tunedself
callofend

=

=
−

−−

−
−−

