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Abstract 

Transport IP-based networks convey data packets toward 
their destination with variable one-way network delays due to 
their best-effort feature. Network delay variation of media 
packets, known also as network delay jitter, crucially disturbs 
the perceptual quality of packetized delay-sensitive services 
such as VoIP, IPTV, and video conferencing. The media-
playing entity should seamlessly hide the perceptual effects due 
to network delay jitter. Such a mechanism is often referred to as 
de-jittering scheme, which should optimize the lateness-loss / 
total delay trade-off.  

In this paper, we describe a novel de-jittering algorithm for 
VoIP packet streams. The algorithm accommodates a wide 
range of network delay jitters. This is achieved with the help of 
three self-tuned first-order filters of experienced one-way 
network delays and delay variance. Following a new end-to-end 
delay adjustment event, the de-jittering algorithm tunes for the 
safety factor, which is used to calibrate the variance around the 
estimated average network delay, in order to optimize the 
perceptual quality for a given network condition. The 
calibration process is performed using the recent history of 
estimated one-way network delays. This enables to predict with 
high accuracy the optimal end-to-end delay which will be used 
till the next adjustment event. Simulation results of VoIPoW 
(VoIP over wireless) show that our de-jittering algorithm 
significantly outperforms the baseline de-jittering algorithm [5] 
in terms of instantaneous and overall perceptual quality. 

Keywords: VoIP, Network delay jitter, de-jittering buffer 
schemes, perceptual quality 

1. Introduction 

The integration of delay-sensitive services such as VoIP and 
IPTV over transport IP-based networks requires the 
development of suitable protocols, architectures, and QoS 
control algorithms. This class of services needs the reception of 
each sent media unit before its expected playback instant, but 

may tolerate some packet losses. However, unmanaged data IP 
networks have been designed to deliver reliably in-sequence 
delay-insensitive elastic traffic such as file, web, and mail 
transfer. A significant effort has been made within 
standardization bodies, academic institutions, and industry to 
integrate packetized delay-sensitive services over data 
networks. For instance, the IETF (Internet Engineering Task 
Force) has defined a set of protocols to accommodate 
multimedia services over Internet such as RTP, RTCP, SIP, and 
SDP [1]. Other important effort has been made by the ITU 
(International Telecommunication Union) and the ETSI 
(European Telecommunication Standardization Institute) 
organization bodies [2, 3]. 

Packetized Multimedia (including Voice) over IP service 
increasingly replaces and extends circuit-switched telephone 
service offered by Telecom providers in homes and enterprises, 
a move often referred to as  service network convergence [2, 3]. 
However delivery of media packet streams over IP transport 
systems introduces new sources of impairments, which are not 
found over ordinary telephone network, such as low bit-rate 
CODECs, transcoding, packet loss, delay non determinism and 
jitter. The low bit-rate coding schemes (video and audio), 
which are used to minimize network congestion, significantly 
influences the intelligibility of original content. Moreover, 
VoIP service introduces new sources of delay such as framing, 
queuing, processing, and buffering delays.  

There are several remedies to prevent/reduce the perceptual 
quality degradation of voice conversations carried over IP 
networks. Basically, perceptual quality can be improved either 
using network- and/or terminal- centric strategies. A network-
centric approach such as IntServ and DiffServ consists of 
deploying adequate QoS mechanism at intermediate node to 
satisfy delay-sensitive service class needs [4]. A terminal-
centric approach consists of well-engineering QoS control 
algorithms at sender and receiver sides to properly deal with 
incurred network impairments. For instance, the sender can 
automatically switch its transmission rate and protection 
mechanism according to the prevailing bandwidth and packet 
loss behavior [5]. On the other hand, the receiver can passively 
recover individual lost packets using packet loss concealment 
technique and absorb delay jitter introduced by IP networks. 



 

In this work, we focus on the de-jittering buffer schemes 
used to remove jitter  at the receiver side. Basically, a receiver-
based network delay jitter absorption scheme delays arrivals in 
a buffer, referred hereafter to as de-jittering buffer. This allows 
producing uniform spaced media packets, as generated at 
sender side, which results in a faithful media reconstruction. 
The buffered media units are sent to the decoder according to 
their playback instants calculated by the de-jittering buffer 
management algorithm, referred hereafter to as play-out 
algorithm. The effective removal of network delay jitter 
generally requires a set of statistical network measurements 
such as one-way network delays (usually estimated) and delay 
variance. In accordance, the end-to-end delay is properly 
adjusted to optimize the perceptual quality for a given network 
condition. The methodologies adopted by the play-out 
algorithm to measure and process network measurements 
significantly influence the performance of any jitter removal 
scheme. 

This paper describes a novel perceptual-based self-tuned 
playback algorithm of VoIP packet stream. The proposed play-
out algorithm updates, upon the reception of a new packet, 
three statistical measurements of the average network delay and 
variance based on three self-calibrated first-order filters. 
Following a new end-to-end delay adjustment event, the 
proposed algorithm looks for the best safety factor, used to 
calibrate the delay variance, which optimizes the perceptual 
quality over the last active period. This predicts with high 
accuracy the optimal end-to-end delay, for a given network 
condition, which will be used till next adjustment event. Notice 
that the vocal conversational perceptual quality is estimated 
based on a single-ended parametric speech quality models. 
Simulation results of VoIPoW (VoIP over Wireless) clearly 
show that our proposed algorithm significantly outperforms the 
baseline de-jittering algorithms in terms of achieved 
instantaneous and overall perceptual quality. 

The remainder of this paper is organized as follows: Section 
2 surveys de-jittering algorithms used in the context of packet-
based voice conversations and highlights the difficulty 
associated with calibration aspects. Section 3 presents our play-
out algorithm designed specifically to be self-tuning and 
quality-aware. The evaluation of our play-out algorithm is 
given in Section 4. We conclude in Section 5. 

2. Tuning difficulty of jitter absorption 
techniques 

Typically, a play-out algorithm of a VoIP packet stream 
adjusts dynamically the end-to-end latency to follow the current 
trend of network delay and jitter (delay variance). Basically, the 
adjustment of end-to-end latency is performed at the start of a 

new talk-spurt1. This results in the expansion or compression of 
the original silence duration [4]. It is well-recognized that such 
a strategy efficiently hides to certain extent the disturbing 
perceptual effect caused by de-jitter buffer dynamics. This class 
of play-out algorithms, often referred to as per-talk-spurt 
algorithms, has been extensively studied in the literature [4, 5, 
6, 7]. Per-talk-spurt algorithms can be classified into predictive 
and reactive de-jittering schemes [4]: 

− Predictive approaches: They gather the history of a set of 
statistical network measurements such as one-way network 
delay, delay variation, and packet loss. Following a new 
end-to-end adjustment event, predictive strategies estimate 
the optimal play-out latency by treating the recorded 
history. In our opinion, predictive approaches, which are 
optimized for traces captured over wide area IP networks, 
are unsuitable for VoIP conversations over dynamic 
transport systems such as mobile heterogeneous networks.  

− Reactive approaches: They use TCP-similar formulas to 
estimate the current trend of network delay and delay 
variation. The acquired statistical measurements are used at 
a given adjustment instant to estimate the optimal end-to-
end delay for next active period. The baseline reactive 
strategy described by R. Ramjee et al in [6] uses the 
following expressions to update the average network delay 
and delay variance: 
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delays upon the reception of jth packet of nth talk-spurt triggered 
upon the reception of the ith packet, n

ji,v̂  is the average of 

network delay variation,  and 0 ≤ α ≤ 1 is the auto-correlation 
factor, referred hereafter to as filter-gain . The closer the value 
of α to 1 (resp. 0) is, the larger (resp. smaller) is the influence 
of previously sampled measurements relative to current 
measurement. Figure 1 illustrates timing associated with played 
voice packets.   

 
Figure 1: Timing constraints of VoIP playback process. 

                                                           
1 The speech signal source during an interactive vocal conversation switches 
between active, known as talk-spurt, and silence periods. 
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R. Ramjee et al recommended set the filter-gain α to 
0.99802 which was obtained empirically [6]. This value was 
only intended to smooth-out transient one-way network delay 
variations in the estimation of mean network delay. To improve 
the responsiveness of the fixed-gain baseline play-out algorithm 
while filtering transient delay variations, R. Ramjee et al 
proposed a second reactive strategy which uses two gain 
factors, α and α’ to compute the average network delay (α’ < α) 
[6]. This policy is intended to follow more closely and quickly 
network delay variations. The performance of this strategy 
remains close to the fixed-gain baseline strategy since it only 
uses two fixed gains rather than a dynamic gain factor 
computed at run-time for each received packet. Moreover, the 
condition used to select the gain value does not allow filtering 
adequately transient delay variation resulting in an extremely 
reactive behavior [4]. This may result in a large end-to-end 
delay adjustment which likely deteriorates the perceived 
quality. 

To avoid the critical influence of the gain factor on the 
behavior of reactive playback strategy, R. Ramjee et al. 
proposed a third policy which does not use a gain factor at all to 
determine the mean network delay. It is more aggressive to 
follow network delays by assigning the value of minimal 
network delay observed over the last talk-spurt to the average 
network delay. A fourth playback algorithm was designed to 
deal with a pertinent feature of network delays observed over 
wide area IP networks during packetized voice conversations. 
Indeed, by probing network delay traces, R. Ramjee et al. 
noticed the presence of delay spike that represents an 
unpredictable raise followed by a linear decrease of one-way 
network delays [6]. To properly account for such a pertinent 
feature, authors equipped this playback policy with two modes: 
Normal and Impulse. During Normal mode, the algorithm uses 
the fixed-gain baseline algorithm, whereas during Impulse 
mode the algorithm updates the average network delay without 
using any gain factor. Two triggering conditions are defined in 
order to switch from Normal to Impulse mode, and conversely. 
Notice that these conditions may differ from one spike-aware 
playback algorithm to another [7, 8]. The behavior of the spike-
aware playback policy remains identical to the fixed-gain 
baseline algorithm under normal conditions. This algorithm 
outperforms notably the baseline algorithm only for delay 
traces characterized by a large number of spikes [6]. 

The above description proves the difficulty and the 
relevance of filter-gain factor tuning and calibration process. In 
reality, a magic static gain factor that performs well under all 
network circumstances is not possible [9]. This observation has 
motivated researchers to design new reactive de-jittering 
algorithms which use a dynamic filter-gain computed at run-
time [9, 10, 11, 12]. The discrepancy between different 
proposals stems from the method used to calculate the value of 
filter-gain at run-time. As such, the average one-way network 
delay and delay jitter are given by: 

n
ji,

n
ji,

n
1-ji,

n
ji,

n
ji, T)α(1T̂αT̂ ×−+×=   (3) 

n
ji,

n
ji,

n
ji,

n
1-ji,

n
ji,

n
ji, TT̂  )α(1v̂αv̂ −−+×=  (4) 

where, n
ji,α  refers to the value of filter-gain at the reception of jth 

packet of nth talk-spurt started at the ith voice packet. In [9], M. 
Narbutt et al. proposed a de-jittering policy labeled α-adaptive, 
which computes the filter-gain at run-time for each received 
packet. To do that, authors build off-line an empirical function 
which associates with each short-term average network delay 
variation the suitable value of α. The precise form of the 
developed function remains unknown since it is a subject to a 
patent. Basically, a high value is assigned to α when the 
playback process detects a low delay jitter inside the network. 
However, a low value is assigned to α when the playback 
process detects a high delay jitter inside the network. 
Performance evaluation of α-adaptive policy showed that it 
achieves better lateness-loss/total delay trade-off than 
conventional reactive and predictive de-jittering schemes [9, 
10]. 

Following the reception of the ith packet, which triggers the 
start of a new talk-spurt, previously described reactive policies 
calculate the value of next end-to-end delay as follows [6]: 
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where, n
pT  is the end-to-end delay which will be used for the nth 

talk-spurt, β, known as the safety factor, is used to control 
lateness-loss/total delay trade-off. The higher (resp. lower) the 
value of β is, the larger (resp. smaller) is the end-to-end delay 
and the lower (resp. higher) is the lateness-loss ratio. R. Ramjee 
et al. recommended setting the value of β to 4. This value was 
selected following an empirical tuning process using a set of 
traces captured from a wide area IP network [6]. Hence, this 
value will surely be unsuitable for other voice transport systems 
such as last- and multi- hop wireless data networks. This 
observation has motivated researchers to seek at run-time the 
safety factor that likely optimizes the reactive de-jittering 
policy performance for a given network delay behavior [13, 
14]. As such, the end-to-end delay is calculated as follows: 
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where, βn is the value of safety factor used for the computation 
of end-to-end delay of the nth talk-spurt. Basically, a small 
(resp. large) value of β, i.e., below (resp. above) 4, is only 
required when delay variance is high (resp. low) in order to 
prevent excessive late arrivals while keeping the delay below 
an acceptable range [13, 14]. Basically, there are two 
approaches, which can be adopted to look for the suitable value 
of βn at run-time: 



 

(1) Function-based approach: The calculation of βn is based 
on a pre-defined function which is developed off-line 
based on a training process [12]. The network condition is 
characterized using measures such as mean network delay, 
lateness-loss ratio, or mean network delay jitter, which 
may be used as input parameters of the developed 
function. This strategy does not require recording one-way 
network delay measurements, and hence preserves the 
intrinsic assumption of reactive de-jittering policy. 

(2) History-based approach: The calculation of βn needs the 
processing of one-way network delay history. βn may be 
assigned to the value which maximizes the perceptual 
quality over the recorded history [13]. As such, the 
resulting policy can be seen as a combination between 
intrinsic features of reactive and predictive policies. 

The empirical performance study undertaken by R. Ramjee 
et al. and subsequently by L. Sun et al. of reactive policies 
showed that each de-jitter algorithm is able to efficiently absorb 
network delay jitter for a given network delay condition, e.g., 
low network delay/jitter [6, 14]. Guided by this observation, L. 
Sun et al. proposed a playback algorithm which automatically 
adopts the adequate reactive de-jitter policy according to the 
prevailing one-way network delay condition [14]. H. Melvin 
proposed a similar delay-aware playback strategy which 
switches between the static and the baseline adaptive de-
jittering policies [4]. The selection of a de-jitter scheme is 
performed according to the prevailing trend of network delay. 
In our opinion, it is more suitable to concurrently run several 
filters on incoming one-way network delay measurements. The 
obtained statistical estimates of mean network delay and delay 
variation can be subsequently useful to calculate the suitable 
total delay for the next talk-spurt. In addition, we believe that a 
de-jittering policy which uses reactive strategy to estimate 
average network delay and delay variance and predictive 
strategy to calibrate the safety factor will surely outperform 
each de-jittering policy run alone, for all network delay 
conditions. In fact, in such a case, the agility of reactive and 
stability of predictive policies can be mixed to achieve optimal 
prediction of network delay behavior, which results in the 
maximization of users’ satisfaction for a given network 
condition.  

3. Self-tuned multi-filter perceptual-based de-
jittering buffer algorithm 

To efficiently deal with a wide range of network delay jitter 
conditions, especially observed over mobile networks, a flexible 
de-jittering policy is required. Such a policy should properly 
trade-off between agility and stability in the computation of 
average network delay and delay variance measurements, used 
to calculate the end-to-end delay. An agile de-jittering policy 
will result in quick reaction to transient delay changes with 
consequent significant  expansion or compression ratio of the 

altered silence period duration, and sometimes an overlap 
between consecutive talk-spurts. This notably impairs the 
intelligibility of presented voice stream [4]. On the other hand, 
a stable reactive de-jittering policy will be unable to follow 
closely and quickly the prevailing network delay condition. 
This may lead either to a large lateness-loss arrival ratio, when 
network delay is under-estimated, or needlessly large total 
latency, when network delay is over-estimated. Notice that the 
agility/stability of a per-talk-spurt delay jitter removal 
algorithm is also linked to a set of configuration parameters 
used by the voice application such as hang-over duration, 
packet duration, and Voice Activity Detection (VAD) 
algorithm [4].  

To achieve adequate agility over dynamic networks, we 
develop a new playback policy which updates the average 
network delay and delay variance based on three adaptive-gain 
first-order filters proposed and studied in [15]. The filter-gain is 
calculated using glass-box explicit mathematical expressions, 
unlike black-box empirical functions. These filters have been 
developed for the provision of accurate prediction of network 
statistical measures such as network delay and short-term 
available bandwidth over mobile networks. Upon the reception 
of a new arrival, each filter separately updates and maintains its 
estimation of average network delay and delay variance. The 
first-order and adaptive value of the gain factor constitute the 
intrinsic common features of all used filters. They differ in the 
method used to compute the value of filter-gain. The 
operational mode of the adopted three filters can be 
summarized as follows: 

(1) Flip-flop Filter (FF): It uses two static-gain first-order 
moving average filters to update the average network delay 
and delay variation estimates. The first (resp. second) filter, 
that has a static-gain value equal to 0.1 (resp. 0.9), is agile 
(resp. stable). The FF filter is somehow similar to the 
second policy described in [6], but differs in the condition 
used to switch between agile and stable filters. Upon the 
reception of a new one-way network delay measure, the FF 
filter selects the agile or stable filter to update average 
network delay and delay variation using an adapted version 
of control chart algorithm [15].  

(2) Stability Filter (SF): It dynamically adapts the value of 
filter-gain according to network instability. The SF filter 
was conceived to smooth-out the calculated averages of 
network delay and delay variance estimates, when the 
network delay exhibits an unstable behavior. As such, a rise 
of network instability, detected through consecutive 
divergent network delay measures, entails an increase of 
filter-gain. This behavior makes the filter more stable, 
which lead to efficiently filter-out transit delay variation. 
The raw network instability is measured upon the reception 
of ith packet, as follows: 
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where, i
netT  refers to the encountered network delay of ith 

packet. The raw instability measures of Si are smoothed as 
follows:   

( ) i1-ii Sδ1ŜδŜ ×−+×=   (8) 

where, iŜ  is the filtered measure of network instability 

calculated upon the reception of ith packet and δ is a static 

smoothing factor. The greater the value of iŜ is, the higher 

is the network instability. M. Kim et al. recommended, 
following an empirical study, to assign the value 0.6 to δ 
[15]. The filter-gain of SF filter, αi, is computed upon the 
reception of ith packet, as follows: 

max

  i
i S 
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where, Smax is the maximal value of Si over the ten most 

recent samples. The closer the value of iŜ  to Smax is, the 

closer the value of αi to 1. As such, the filter output will 
become more stable during periods characterized by a high 
instability. 

(3) Error-based Filter (EF): It dynamically updates the filter-
gain according to the prediction error between estimated 
and measured one-way network delays. Basically, a higher 
(resp. lower) filter-gain value is used when the estimates 
network delays exhibit a good (resp. bad) precision with the 
measured ones. The prediction error is given by: 

i
net

1i
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where, 1-i
netT̂  is the EF filter output calculated upon the 

reception of packet number i-1. The raw prediction error 
measures are smoothed, as follows: 

( ) i1ii Eλ1ÊλÊ ×−+×= −   (11) 

where, iÊ is the filtered prediction error measure upon the 

reception of ith packet and λ is a smoothing factor set to 0.6. 
The filter-gain of EF filter is calculated as follows: 

max

i
i E 

Ê
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where, Emax is computed in a similar way to Smax. As we can 
see, the lower the prediction error value is, the closer is the 
value of αi to 1, which assures filter stability. A high 
prediction error value results in a decrease of the filter-gain, 
which allows a fast convergence to actual one-way network 
delay trend. 

Upon the detection of a new talk-spurt, three estimates of 
average network delay and delay variance are available. As 
such, the estimated end-to-end delay of next talk-spurt can be 
calculated for each filter as follows: 

   n
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where, n
pf,T is the end-to-end delay calculated based on filter f 

which belongs to the set {FF, SF, EF}. n
i,1f,T

)
and n

i,1f,v̂   are the 

produced estimates by the filter f of average one-way network 
delay and delay variance. βf,n is the value of the safety factor 
which is dynamically calculated for each filter f at the start of 
the nth talk-spurt. The selection of suitable value of βf,n is based 
on the maximization of the conversational perceptual quality 
for a given network delay history. 

Typically, the conversational quality is quantified using the 
MOSc (Mean Opinion Score), which varies between 1 
(unacceptable quality) and 5 (excellent quality) [16]. The MOSc 
is affected by the network and lateness packet loss ratio and 
end-to-end delay. The smaller the total packet loss ratio and 
delay are, the better is the conversational quality. In reality, 
packet lateness-loss ratio and total delay are tightly linked since 
an increase of total delay leads to a reduction of packet 
lateness-loss ratio, and conversely. In our case, a decrease of 
βf,n entails a decay of total delay at the expense of a potential 
increase of packet lateness-loss ratio, and conversely. Figure 2 
illustrates the effect of varying the value of safety factor βf,n on 
MOSc. The curve trend can be explained as follows, when the 
value of the safety βf,n is too low then roughly all voice packets 
are ignored. This leads to a very poor listening perceptual 
quality. A gradual increase of βf,n results in decrease of 
lateness-loss packet ratio, which entails an improvement of 
listening perceptual quality. However, beyond a certain 
threshold, the total delay becomes excessively large which 
significantly degrades the quality of interaction without a 
significant improvement of listening perceptual quality. As 
such, the goal of our network delay jitter removal policy is to 
assign for each filter the value that maximizes the MOSc to βf,n. 
Notice that such a strategy requires recording network delay 
history, which constitutes the intrinsic feature of predictive de-
jittering policy.  

 
Figure 2: Inherent trend of the conversational perceptual quality 

scores, MOSc, as a function of βn. 



 

As we can see, there is a requirement to quantify 
automatically the MOSc to determine the suitable βf,n. Several 
conversational speech quality estimate models have been 
reported in the literature [14, 17]. In this work, we use the no-
reference parametric speech quality estimate model developed 
by K. Fujimoto et al. [17]. This model assumes that the 
perceptual annoying effect due to total packet loss and delay 
are additive in psychological scale. It has been calibrated for 
the standard widely-used ITU-T speech CODEC G.711, but can 
be extended to cover other CODECs. The MOSc for a given 
packet loss ratio and end-to-end delay is obtained as follows:  

MOSc (PLR, d) = 4.10 − 0.195×plr + 2.64×10-3d − 1.86×10-5d2 
+ 1.22×10-8d3   (14) 

where, PLR is the total packet loss ratio and d represents the 
end-to-end delay. At the start of a new talk-spurt, the developed 
algorithm seeks, for each filter, the value of βf,n that maximizes 
MOSc. The input parameters, namely total packet loss ratio and 
delay, of speech quality estimate model given in (14) are 
calculated for each value of βf,n using the history of recorded 
network delays. Upon the detection of a reduction of the MOSc 
following an increase of βf,n, our playback policy switches off 
the tuning process and records the optimal value of the safety 
factor. The history contains experienced one-way network 
delays over the last T seconds. The duration of history can be 
either static or dynamic. In this work, we use the static interval 
set to 9 s. By the end of the history-based auto-tuning process, 
three optimal MOSc scores -- one value per filter -- will be 
available for the de-jittering algorithm. Obviously, our 
developed policy selects the configuration, i.e., the average 
network delay, delay variance, and safety factor, which 
optimizes the MOSc. Notice here that the designed algorithm is 
CODEC aware since the calculation of the end-to-end delay 
depends on the speech quality estimate model which is specific 
for each CODEC.  

Algorithm 1 summarizes our developed auto-tuned de-
jittering policy. Basically, the algorithm records the one-way 
network delay history using a rolling list which keeps the recent 
observations. The average network delay and delay variance are 
separately updated using each filter. At the occurrence of a new 
talk-spurt, the playback algorithm seeks the safety factor that 
optimizes the perceived quality for each filter over the recorded 
history. After obtaining the best safety factor for each filter, our 
developed algorithm selects the total latency that maximizes the 
perceptual quality among all available MOSc scores.  

4. Performance evaluation 

In order to investigate the performance of our designed 
playback policy over mobile network, we simulate the 
configuration illustrated in Figure 3  using NS2 [13]. The 
simulated test-bed includes two access points used to bridge 
between wired and wireless worlds. End nodes are attached and 

served by one access point at a given instant. The access points 
are linked using an existing infrastructure which includes one 
core router and two high capacity wired links (see Figure 3). 
The wireless interface data rate is set to 2 Mbps. Thus, the 
wireless link constitutes the bottleneck of all established 
connections. The distributed access protocol IEEE 802.11b is 
used in order to resolve contentions. All mobile nodes are 
assumed to remain stationary during a simulation run.  

Algorithm 1 : Self-tuned quality-aware de-jittering policy 

n
pf,T : The nth total latency calculated based on the filter f 

n
ji,f,T̂ : The average network delay calculated using the filter f at the 

reception of jth packet of nth talk-spurt started at ith packet 
n

ji,f,v̂ : The average delay variance calculated using the filter f at 

the reception of jth packet of nth talk-spurt started at ith packet  
INC: The increment amount of the safety factor βn 

H: A rolling list of one-way delay history  
opt[3]:  An array containing optimal score achieved by each filter 
Beta[3]: An array containing optimal safety factor for each filter  
FF: Flip-Flop filter, SF: Stability Filter, EF: Error-based Filter  
βmin and βmax are the lower and upper thresholds of βn 

LossRate ( ): A function which returns the number of ignored 
packets for a given network  delay history and a playback latency 
MOSc( ):  A model estimating the conversational perceptual quality 
MaxIndex( ): A function which returns the index of the maximal 
value of a given array of floats 

1. for each received packet do 
2.   if (new talk-spurt == FALSE) 
3. update the history of network delay H 
4. for each filter f ϵ {FF, SF, EF} do 
5. update the weighted network delay and variance 
6. end for 
7.   else  
8. for each filter f ϵ {FF, SF, EF} do 
9. Beta[f]← βmin, score ← 1 
10. do 
11. opt[f] ← score 
12. n

pf,T ← n
i,1f,

n
i,1f, v̂Beta[f]T̂ ×+  

13. PLR ←LossRate (H, n
pf,T ) 

14. score ←MOSc(PLR, n
pf,T ) 

15. Beta[f] ← Beta[f] + INC 
16. until (score <= opt[f] or βn ≥ βmax)  
17. end for 
18. f ← MaxIndex (opt) 

19. n
pT ←

n
f,i,1T̂  + Beta[f] ×

n
i,1f,v̂   

20. Initialise H 
21.   end if 
// Playback instant of jth packet of nth talk-spurt started at ith packet 
22. n

p
n

ji,s,
n

ji,p, TTT +=  

23. end for 



 

 

Figure 3: Hybrid wired/wireless simulated test-bed. 

A bidirectional voice conversation is established between 
the two VoIP terminals included in the test-bed (see Figure 3). 
Voice streams are synthesized using an ON/OFF model which 
imitates a realistic packet-based voice source when a voice 
activity detection algorithm is used. The data rate at application 
level is equal to 64 kbps in order to mimic the output of the 
CODEC G.711. The packet duration is set to 20 ms which 
implies a payload size equal to 160 bytes and packet rate equal 
to 50 packets / second. The voice conversation lasts for 250 sec. 
Two background stations are used in order to increase the 
network workload. Background traffic is sent toward the wired 
sink node from the start to the end of the simulation run. The 
intensity of background traffic has been varied according to 
packet size, which was varied from 500 to 1500 Bytes, and 
maximal TCP tolerable window size, which was varied from 5 
to 30 packets. Figure 4a illustrates the incurred one-way 
network delays when background traffic is disabled. However, 
Figures 4b and 4b illustrate the effect of different injected 
background traffic intensities on one-way network delay. From 
Figure 4a, we can observe that voice packets reached the 
receiver side roughly instantaneously without notable network 
delay jitter. Figures 4b and 4b illustrate the incurred one-way 
network delay when background traffic is enabled. In such 
conditions, voice packets sustain high one-way delays and 
delay variations. This is due to the best-effort property of the 
transport network. In addition, the examined VoIP voice 
packets travel through two wireless hops which increase 
dramatically the network latency. Moreover, the packet size of 
background traffic is relatively long (> 500 bytes) which 
blackouts the wireless channel for a significant duration.   

 

(a)           (b)   (c) 

Figure 4: The effect of background traffic intensity on network 
delay variation 

 

Figure 5: Influence of background traffic on VoIP packets. 

As such, voice packets are enforced to wait for a long 
duration either at the mobile node interface or at the 
transmission queue of the access point. Moreover, the 
background traffic attempts to efficiently use the available 
bandwidth which will quickly saturate the wireless channel. 
Further, the acknowledgment packets sent by sink node 
increase the cell load and results in contentions with voice 
packets as well as background data packets. Figure 5 shows the 
effect of different background traffic intensities on packet loss 
ratio and mean one-way network delay and  jitter. Figures 6a 
and 6b illustrate the behavior of the baseline policy, where the 
gain value is set to 0.99802, and our self-tuned de-jittering 
policy. Figure 6 clearly shows that our self-tuned play-out 
algorithm follows more closely network delay variations than 
the baseline playback algorithm. The self-tuned and baseline 
playback algorithms entail an overall lateness-loss ratio equal 
to 32.13% and 10.10%, respectively. On the other hand, the 
self-tuned and baseline playback algorithms entail a mean total 
delay equal to 761 ms and 1105 ms, respectively. The reduced 
packet lateness-loss ratio achieved by the baseline playback 
algorithm is performed at the expense of a dramatic increase of 
total delay. This total delay exceeds significantly the tolerable 
one-way delay in the context of conversational services 
(<400ms). Figure 7 gives the instantaneous perceptual quality 
achieved by the self-tuned and the baseline playback 
algorithms. The perceptual quality is estimated using an 
adapted version of ITU-T E-Model which produces as output a 
rating factor varying between 0 (bad quality) and 100 
(Excellent quality) [10]. The assessment period duration is set 
to 10s. These curves prove that the self-tuned play-out 
algorithm improves considerably the perceived quality over 
time. Moreover, our self-tuned policy achieves a better overall 
rating factor at the end of the voice conversation (see Figure 7). 

 
(a) Baseline playback algorithm     (b) Self-tuned playback algorithm 

Figure 6 : Behavior of our self-tuned de-jittering policy compared 
with the baseline policy (background packet size = 1500 bytes). 
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Figure 7 : Instantanoeus and overall perceptual qualiy of 

self-tuned and fixed play-out algorithms. 

The pie charts depicated in Figure 8 illustrate the user 
satisfaction throughout the packet-based voice conversation. 
These charts are produced based on the perceptual contour 
concept described in [10]. Plotted pie charts shows that the self-
tuned playback algorithm outperforms the baseline playback 
policy at perceptual level. For instance, the baseline de-jitter 
algorithm produces a poor perceptual quality during 94% of the 
voice conversation duration, whereas the self-tuned play-out 
algorithm reduces this ratio to 46% of the studied voice 
conversation. 

5. Conclusion and future work 

In this paper, we presented a new de-jittering algorithm of 
packet-based voice conversations. The designed play-out 
algorithm has flexibility to cope with a wide range of delay 
jitters observed over mobile networks. It concurrently uses 
three adaptive-gain first-order filters to calculate the optimal 
end-to-end delay. At the occurrence of an adjustment event, it 
self-tunes at run-time the safety factor that likely optimizes the 
perceived quality. Simulation results of VoIPoW show that our 
de-jittering algorithm outperforms the baseline fixed-gain and 
safety factor de-jittering policy at perceptual level. The 
obtained results exhibit that contention delay and jitter 
constitutes a potential source of quality degradation (through 
both playout delay and late packet loss) which should be 
properly reduced using dedicated algorithms and protocols. The 
delay-sensitive feature of packet-based voice conversations 
should be considered by access as well as core nodes especially 
in wireless environments. This will be investigated further in 
our future work as we examine the contribution that QoS 
enabled protocols such as 802.11e can make.   
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