

Wireless Sensor Network Synchronisation- D-FTSP

Jonathan Shannon, Hugh Melvin Antonio Ruzzelli*

Discipline of Information Technology, National University of Ireland, Galway *UCD School of Computer Science & Informatics

Funded by IRCSET - www.ircset.ie

Performance Engineering Laboratory pel.it.nuigalway.ie

Outline

- Wireless Sensor Networks (WSNs)
- Wireless Sensor Network Applications
- WSN Synchronisation
 - FTSP
 - D-FTSP
- Experiments
- Results

Wireless Sensor Networks (WSN)

- Miniature computing devices
- Sample Platform
 - 8 MHz
 - 10kB RAM
 - 802.15.4 Transceiver
- Limited battery power
- Sense and collect physical data

WSN: Market ForecastsOSNA OSNA research

[1]

Market	Market Size in USD (Irl/EU/North America/USA/ Global)	Driver
Patient Monitoring	EU: 105.7 Mio (2010), 176.9 Mio (2015)	Health care modernisation
	USA: 339.3 Mio (2010), 1500 Mio (2015)	
Industrial Application (including DC)	EU: 13.2 Mio (2010), 30.7 Mio (2014)	Improved competitivene ss
In-Building (Building Automation)	EU: 38.7 Mio (2010), 83.8 Mio (2014)	Energy costs
	NAm: 741.3 Mio (2010), 1521.2 Mio (2016)	
	Glb: See	
Smart grid	Irl: 4 Mio (2010), 7 Mio (2014)	Government directives
	EU: 40.8 Mio (2010), 70.7 Mio (2014)	
	USA: 395.2 Mio (2009), 2743.6 Mio (2014)	
Environmental Monitoring	Glb: 40 Mio (2009), 79 Mio (2014)	Environmental awareness

WSN

- IEEE 802.15.4
 - Underlying Physical/Data Link Layer for WSN
- Zigbee
 - Implements higher layers on top of 802.15.4
- 6LoWPAN
 - Alternative to Zigbee
 - IPv6 (or v4) on top of 802.15.4
- + others

OSI Model

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

WSN: Related concepts

- Smartdust
 - US Military concept
 - Move to Nanotechnology
- Internet of Things
 - Expansion of Internet
 - 6LoWPAN
- Google's Android@Home
 - Device interoperability within the Home ...with android as glue

H. Melvin, ITSF, Nov. 2011

6LoWPAN

Arch Rock Corporation (2007) 'Arch Rock IP/6LoWPAN Overview: An IPv6 Network Stack for Wireless Sensor Networks'

H. Melvin, ITSF, Nov. 2011

Recall SmartGrid

- Smart Grid : Smart Buildings Industry
 - Smart meters dispersed throughout building monitoring power flows
 - Sensors measuring air flow, temperature,CO2, occupancy etc.
 - EMS (Energy Management System) : Data along with real time pricing information used to drive DSS and schedule an efficient energy plan

• Smart Grid : Smart Buildings -home

- Smart Meter energy usage
 - Access to real time pricing?
- **Sensors** measuring temperature, light, humidity,occupancy
- EMS with mobile interface Web app or mobile app used to monitor and schedule energy plan, V2G technology

- WBAN (Wireless Body Area Network)
 - Sensors measure vital parameters of body
 - Data transmitted over network
 - Analysis of multiple vital parameters
 - Better evaluation of condition
 - Delivered at reduced costs

Environmental Monitoring

- Sensors dispersed over large geographical area
- Acquire environmental data in real-time

Applications

- Flood management
- Agricultural: Irrigation & nutrient systems
- Weather forecasting
- Air & Water quality

WSN Synchronisation

• WBAN (Wireless body Area network)

- Multiple vital parameters
- Require precise time alignment (< msec)
- Environmental analysis
 - Sensors are dispersed over large geographical area

• Smart-Grid

- Time-stamped data used in conjunction with real-time pricing to formulate energy schedule
- NTP/PTP significant computation & data transmission overhead

Flooding Time Synchronisation Protocol (FTSP)

- Achieve accuracies of up to a 1 µs
- Operation
 - Root elected based on lowest network ID
 - Root broadcasts time messages at preconfigured tx interval
 - Children use messages & regression analysis to determine offset and skew
 - Children begin broadcasting messages and process repeats

FTSP

FTSP Issues

- **Directly** corrects for **skew** differences
- Indirectly correct for drift by pre-configuring a node's tx interval based on worst case future operating environment
- **Drift** caused predominantly by temperature
- In stable environment with infrequent temperature fluctuations
 - Unnecessary communication overhead
 - Needless energy use

Temperature characteristic

Solution – D-FTSP

- Enhance FTSP to directly monitor drift
- Node alters tx interval based on both child's drift and an application error bound
- Optimise communication and therefore reduce energy use

D-FTSP

19

Experiments

- Setup 1 Stable environment
- Setup 2 Un-Stable environment
- FTSP with beacon intervals 30s, 60s, 120s and 180s
- **D-FTSP** with error bound of **1 tick**
- Experiment duration **100** minutes

Results

FTSP - Node_7 Offset & Skew (BI = 120s)

21

H. Melvin, ITSF, Nov. 2011

Results- Stable environment

FTSP

δ		Mean	Max	σ
(s)	# Transmissions	(Ticks)	(Ticks)	(Ticks)
30	2,400	1.15	8.00	1.17
60	1,200	1.21	8.00	1.24
	,	- -		
120	600	1.29	7.00	1.22
120	000	1,27	7.00	1,22
100	400	1 50	0.00	1.20
190	400	1.52	9.00	1.30

DFTSP

eavg		Mean	Max	G
(Ticks)	# Transmissions	(Ticks)	(Ticks)	(Ticks)
	500	0.02	- 00	0.00
1	502	0.93	5.00	0.90

H. Melvin, ITSF, Nov. 2011

Results- Unstable environment

FTSP

	δ		Mean	Max	G
	(s)	# Transmissions	(Ticks)	(Ticks)	(Ticks)
	30	2,400	1.61	17.00	1.78
	60	1,200	2.18	29.00	3.57
	120	600	5.18	86.00	10.16
	180	400	8.12	156.00	16.90
DFTSP					

Eavg		Mean	Max	6
(Ticks)	# Transmissions	(Ticks)	(Ticks)	(Ticks)
1	634	1.50	58.00	2.74
		H. Melvin, ITSF, Nov. 2011		

Results

Results

Transmissions per Node

25

Conclusions

- WSN market growth
 - Range of Application Domains
- Synchronisation requirements vary greatly
- Energy use key issue
 - Limit communication
 - Maximise sleep time
 - D-FTSP limits synchronisation overhead

I....Professor Maoldearga O Maolmisery ...have created the worlds first **quantum-computer powered WSN**

H. Melvin, ITSF, Nov. 2011

