
A Dynamic Wireless Sensor Network Synchronisation

Protocol

Jonathan Shannon, Hugh Melvin

College of Engineering and Informatics

 NUI Galway

Galway, Ireland
shannon.jonathan@gmail.com, hugh.melvin@nuigalway.ie

Abstract — This paper provides the reader with a

comprehensive description of time synchronization

within the wireless sensor network domain and details

an alternative dynamic synchronization protocol

which could result in reduced energy usage when

compared to current static protocols.

1. INTRODUCTION

Time synchronisation plays a critical role within the

area of real-time distributed systems. While this has

always been the case, the continuous development of

more advanced and diverse systems place an ever-

increasing demand on time synchronisation facilities in

terms of reliability, precision requirements and energy

consumption. Advances in integrated circuit design

and fabrication techniques have given rise to the

development of miniature computing devices which,

with respect to size, have relatively sophisticated

capabilities such as environmental sensing and radio

communication. This technology in turn has spawned a

new area in distributed data collection termed wireless

sensor networks (WSN). While wireless sensor

networks are nothing more than a number of dispersed

miniature sensing devices connected via some wireless

communication protocol, their applications are

endless.

With regard to time sensitive WSN applications

such as industrial automation, fire tracking or

environmental monitoring applications, data collected

within the WSN is generally of little use if the point in

time it was acquired at is unknown. Time is crucial

when it comes to the analysis of sensor data and in

order to make accurate judgements or predictions

about a system as a whole the issue of time

synchronisation must be dealt with. While data time-

stamping might be viewed as the main motive for time

synchronisation, some other incentives include the

time division multiple access (TDMA) and duty

cycling techniques used by MAC protocols. In relation

to duty cycling, the miniature computing devices used

in WSNs are constrained in terms of energy and

effective synchronous duty cycling techniques such as

S-MAC and T-MAC provide a means to per long

battery life.

In contrast to the internet domain, WSNs place

extra constraints on time synchronisation techniques

due to their composite node’s limited processing,

memory, communication and energy resources. As

such, time protocols that employ frequent or large

radio transmissions or complicated statistical

techniques like those used by NTP are not practical. In

addition a WSN is tightly coupled to its application

meaning the application will have a large influence on

the optimal synchronisation protocol employed.

At present the Flooding Time Synchronisation

Protocol (FTSP) is the de-facto time synchronisation

protocol employed by WSN applications. FTSP uses

an elegant approach to implicitly build an ad-hoc

synchronisation tree that can effortlessly adjust to

changes in network topology. This together with its

precision capabilities has led to its popularity.

However, one limitation of FTSP is its un-optimal

transmission rate. To achieve a specific level of

accuracy FTSP transmits time messages at a periodic

pre-calculated rate. In general, the number of message

transmissions is based on worst case synchronisation

performance of WSN clocks thus resulting in needless

transmissions and energy wastage. In this paper we

propose a dynamic synchronisation protocol that

dynamically alters the transmission rate of nodes based

on the clock stability of neighbouring nodes with the

aim of reducing message transmissions and, thus,

conserving energy.

 The remainder of this paper is structured as

follows. Section 2 outlines core synchronisation

concepts. Section 3 describes some current static

synchronisation protocols. Section 4 outlines a

possible dynamic synchronisation protocol. Section 5

outlines current work and section 6 concludes the

paper.

2. CONCEPTS

2.1 Sources of Clocks Error

To understand the primary source of clock error one

most understand the workings of a clock oscillator.

Oscillators used to drive computer clocks typically

come in two varieties, namely, resistor-capacitor (RC)

oscillators and crystal-controlled oscillators both of

which generate a sinusoidal output signal with a

constant frequency. RC oscillators are composed of a

network of resistors and capacitors, the structure and

composition of which determines the frequency of the

output signal. Crystal-controlled oscillators employ a

crystal as the frequency-determining device within the

oscillator. Crystals exhibit a characteristic known as

the piezoelectric effect whereby mechanical forces

produce electrical charges and vice versa. Some crystal

substances exhibit this effect to a greater degree than

others, namely quartz and Rochelle salt, and so they

are more commonly employed in oscillators, the

former more so than the latter.

With respect to time keeping, crystal-controlled

oscillators provide superior frequency stability when

compared to their counterparts and, as such, are

commonly employed as the driving force of a

computer system’s real time clock while RC oscillators

are generally used to generate the clock signal in

integrated circuits. Crystals used in oscillators are cut

and ground into thin wafers with a specific dimension

and thickness that allows them to resonate at a desired

frequency or natural resonant frequency. This

frequency dictates the maximum resolution of the

clock it will drive. Subsequently, the crystal is

mounted in holders within the oscillator circuitry and

voltage applied to it, the result of which is mechanical

vibrations which in turn produce an output voltage at

the crystal’s natural resonant frequency.

The desired natural resonant frequency of a crystal

is highly dependent on its manufacturing process.

Given this fact, it is safe to assume that a crystal’s

actual frequency may differ from its stated frequency.

Hence, with respect to a perfect crystal, most crystals

will have a frequency offset or frequency error. This is

generally true and in most cases manufactures will

state the maximum error, which is typically less than

10 parts per million (ppm). The problem with

frequency error becomes apparent when one considers

the timer system the oscillator drives. If a crystal is

stated as having a frequency of 32,768 Hz then 1

oscillation and likewise 1 clock tick will be interpreted

by the system as an interval of 30.5 μs. If however the

crystal has a frequency offset of -10 ppm then for

every million oscillations of the crystal an extra 305 μs

will have passed in real time. While this may not seem

significant, it results in a time error of just under a

second a day which is undesirable in many distributed

applications.

The frequency error of an oscillator represents an

important characteristic of a clock, namely, the

precision. Another important characteristic of a clock

is its stability. Stability is the ability of the clock to

sustain a constant frequency over time. To understand

how the frequency of a clock could change one must

recognise that the frequency-determining device

within the oscillator is influenced by physical

conditions. Temperature and pressure changes cause

materials to expand and contract and since we stated

previously that the natural resonant frequency of a

crystal is determined by its dimensions and thickness

then it becomes apparent why. Naturally, voltage too

has an impact but so too do long term processes such

as material aging.

There are a number of approaches of ensuring good

clock stability. The simplest of these is to select a

crystal’s cut such that it has the lowest temperature

coefficient for its operating environment. A more

elaborate approach is to control a clock’s primary

source of instability, that is, temperature, by placing it

in a controlled environment such as an oven (termed

OCXOs). The most effective approach is to replace the

crystal clock with an atomic clock, albeit a very

expensive solution. All of these approaches deal with

the sources of clock error directly and entail altering

the low level clock hardware. This is not always a

feasible solution and so a cheap yet effective approach

is required. A synchronisation algorithm offers just

that, a software based procedure that alters the clock of

a host based on a reference clock, thus ensuring two or

more computing systems adhere to a common

timescale.

2.2 Synchronisation Techniques

The majority of synchronisation protocols share the

same basic design, that is, a server/reference

distributes its understanding of the current time to a

client/host via some communication protocol. The

most simplistic technique, unidirectional

synchronisation, which follows this basic design, has a

host set its clock to the value received in a time

message from a reference. Since the message latency

is unknown and not factored in, this technique is only

sufficient if the message latency from the reference to

the host is lower than the accuracy requirement of the

host. For increased accuracy, one must use round-trip

synchronisation, (see Fig. 1) whereby a host wishing

to be synchronised sends a time request to a reference

node and records the transmission time ti. The

reference node replies with the reception time of the

request message and transmission time of its reply

message, ti+1 and ti+2 respectively. The host node uses

these three timestamps along with the reception time

of the reply message, ti+3, to calculate the one-way

message delay and, thus, determine its clock offset

from the reference.

T(i)

T(i+1)

T(i+2)

T(i+3)

Host

Node

Reference

Node

T(i+1) + T(i+2) - T(i) - T(i+3)

2

θ =

Figure 1: Round-trip synchronisation

Round-trip synchronisation operates on the

assumption that the round-trip times of a message

between a sender and receiver and vice versa are

symmetric. This is unrealistic for many networks due

to the non-deterministic delays associated with

message traversal from a sender to a receiver

(particularly with multi hops) and, as such, the result

of the calculation of a host’s time offset from its

reference will differ from the true offset leading to a

clock error.

A third technique, termed “Reference

Broadcasting”, takes advantage of the broadcast nature

of certain networks. It involves three or more nodes,

all of which lie within the broadcast range of each

other. One node takes on the role of a reference

broadcast node and broadcasts a beacon message.

Each node records the reception time of the beacon

message and subsequently exchanges its recorded

timestamp with all other nodes. This approach results

in the formation of relative time scales whereby each

node can transform its timescale into that of every

other node.

2.3 Sources of Synchronisation Error

 All of the aforementioned synchronisation techniques

are susceptible to different sources of synchronisation

error. To recognise these sources one must understand

the different components of a synchronisation

message’s latency which are categorised in [1] and [2].

These components are the send time, access time,

propagation time and receive time.

The send time represents the time interval between

the recording of a timestamp by the host and the

delivery of a synchronisation message, containing that

timestamp, to the network interface for transmission.

The time taken to construct the message will be

influenced by the underlying operating system. For

instance, the process that constructs the message will

be subject to some scheduling algorithm which may

block it numerous times during its operation.

Furthermore, additional delays may be incurred due to

system call overheads.

The access time represents the delay incurred by the

network interface while waiting to gain access to the

communication medium. This is dictated by the

Medium Access Control (MAC) protocol in use. For

instance, the traditional wired Ethernet and wireless

Ethernet 802.11 protocols use contention based

approaches meaning a node may not transmit until the

channel is clear, thus, high traffic loads will most

likely lead to large access delays.

The propagation time represents the time taken for

a message to traverse the communication link between

sender and receiver. In a single hop network where the

sender and receiver are connected directly by the same

physical medium, the propagation time is dictated by

the speed of light and as such is deterministic. If,

however, the sender and receiver are connected via

multiple network nodes, this time will be non-

deterministic since the message will be subject to

multiple queue and access delays at each intermediate

node.

The receive time represents the time taken for the

receiver’s network interface to receive the message

from the communication medium, decode it and notify

the host application that it has arrived.

While all of the above delays are comprised of non-

deterministic components, except for propagation time

in the case of a single-hop network, much of this non-

determinism can be eliminated by time stamping

message transmission and reception at lower levels in

the communication hierarchy. The non-deterministic

delays associated with the send time and access time

can be almost eliminated by recording the transmission

time when the network interface gains access to the

medium and placing this timestamp in the message as

its been transmitted. Likewise, non-determinism

associated with the reception time can be significantly

reduced by having the network interface initiate the

recording of a timestamp at the beginning of the

reception of a message. This is possible with many

modern sensor platforms which are comprised of

microcontrollers with on board capture/compare

hardware that captures the value of a timer when

signalled to do so by a transceiver. Non-determinism

associated with propagation time in multi-hop

networks can be significantly reduced by ensuring

intermediate nodes incorporate physical layer time

stamping. This is performed by the Precision time

Protocol (PTP) Transparent Clocks [3] which use

specialised PTP time-stamping hardware installed at

each node in the PTP hierarchy. While these

approaches are effective at reducing or eliminating

certain types of non-deterministic delays, they are not

always practical and, as such, techniques for

mitigating the effects of these delays must be

employed. The distinguished Network Time Protocol

(NTP) [4] is a good example of a protocol that

employs such techniques. It use data filtering and

statistical techniques to mitigate errors and as such

provides a practical alternative to other more elaborate

approaches.

2.4 Dealing with Skew and Drift

As stated previously, a clock typically has a frequency

that differs from its stated frequency, that is, a

frequency offset/error which signifies its precision.

Hence, two clocks generally run at different rates.

Given this fact, it is obvious that a single

synchronisation round is inadequate to keep two nodes

synchronised. As such, nodes must periodically

exchange time messages at a rate dependent on the

accuracy requirement of the nodes and their relative

frequency offset. If a node i wishes to stay

synchronised within an error bound ε of a reference

node r, then the interval Δ between synchronisation

rounds must satisfy:

𝝐𝒊 ≤
∆

𝒇𝒓 − 𝒇𝒊

If the accuracy requirements of an application are

quite stringent then the number of message exchanges

required to keep a node’s clock within the error bound

may result in significant communication overhead. To

minimise message exchanges a node can estimate the

frequency offset between its clock and its reference

and use this to determine its clock offset at any point in

the future. The most widely used technique for

estimating skew entails the use of regression analysis,

or more specifically, linear regression. By obtaining

multiple timestamps from a reference, a node can

define a linear relationship between its clock and the

reference clock thus allowing it to determine its clock

offset relative to its reference at any particular point in

time. This linear relationship is defined by the

expression:

𝒕𝒓(𝒕) = 𝜶 + 𝜷. 𝒕𝒊(𝒕)

where tr(t) represents the time at the reference node

r at true time t, ti(t) represents the time at node i at true

time t, α represents the time offset between the nodes

at ti=0 and β represents the frequency offset between

the nodes.

Figure 2: Linear Regression

The accuracy of this relationship is heavily

influenced by the data that is used to postulate it. As

such, non-deterministic latencies in a time message’s

traversal through a network will degrade the accuracy

of this relationship. To remedy this, data filtering

techniques can be used such that only credible data is

used to define the relationship. NTP uses a data

filtering algorithm that filters data based on the round-

trip time of time messages. Data that originates from

messages with lower round-trip times is regarded as

been more accurate since it is more probable that the

message did not encounter large asymmetric latencies.

Linear regression provides a simplistic yet effective

means of defining a relationship between two clocks

which in turn permits a reduction in the number of

message exchanges between nodes. Nevertheless,

linear regression models the relationship as a linear

one which is an approximation. Referring to the

previous section detailing the operation of an

oscillator, it was stated that the frequency-determining

device, namely the crystal, is susceptible to frequency

changes caused predominantly by environmental

factors and the extent of these frequency changes

indicate the stability of a clock. These frequency

changes imply that the relationship between two

clocks is highly complex and cannot be accurately

modelled as a linear one. Due to the difficulties that lie

in accurately modelling this relationship and given

that, in general, frequency changes occur slowly, it’s is

easier to model this relationship as a linear one over

short time intervals and continue synchronisation

rounds at an appropriate interval as long as

synchronicity is required.

3. WSN SYNCHRONISATION PROTOCOLS

3.1 RBS Protocol

The RBS protocol uses the reference broadcast

synchronisation technique to synchronise a cluster of

nodes located within the broadcast range of each other.

Within a cluster, a particular node is elected the beacon

node and periodically transmits a beacon message, the

reception time of which is recorded by all nodes within

the cluster. These nodes subsequently exchange their

reception times and this enables them to determine the

relationship between their clocks and, thus, construct

relative time scales. Ultimately, a node can transform

its time scale into that of every other node within the

cluster.

Since RBS is only concerned with the reception

time of messages, it eliminates the two sources of

synchronisation error dominant with other

synchronisation techniques, namely, the send time and

access time. Consequently, the two leading sources of

error with RBS are the propagation time and the

receive time of a beacon message. Since nodes are all

within broadcast range, the delays associated with the

propagation of a beacon message are dictated by the

speed of light together with the differences in the

distance between nodes and are, thus, deterministic.

While RBS does not directly determine this delay, it is

considered negligible due to its insignificant

contribution to the final clock error. The leading source

of error, thus, becomes the receive time or more

specifically those non-deterministic delays associated

with the receive time of a beacon message.

Assuming the receive error can be reduced by

having a node timestamp the reception of messages at

the physical layer, the authors of RBS performed a

study to characterise the receive error and, thus, verify

their assumption that the maximum error would

unlikely be greater than 1 bit time. Their assumption

was based on the fact that a receiver must be

synchronised to within 1 bit of a message in order to

interpret it. The results confirmed their assumption,

revealing a Gaussian distribution with a mean of 0, a

standard deviation of 11.1 μs and a maximum of 53.4

μs, with 1 bit time being equal to approximately 52 μs

given that the motes’ transceivers operated at 19,200

baud. These results indicated that the accuracy

achieved by a basic form of RBS could be improved

further by having a beacon node broadcast more than

one beacon message and have nodes average multiple

offset estimations to determine the final offset relative

to a neighbour. This procedure, as claimed by the

authors, resulted in an improved accuracy from 11.1 μs

to 1.6 μs in the case of an RBS network with 2

receivers utilising information from 30 beacon

messages. While certainly an effective approach, it did

not deal with clock skew and so the protocol was

further refined by having nodes use multiple messages

and linear regression to estimate their clock skew

relative to their neighbours.

To extend RBS to operate in a multi-hop network

comprised of nodes not within broadcast range of each

other, nodes are organised into multiple clusters each

of which contains one or more nodes that lie within

one or more neighbour clusters. Thus, these nodes act

as gateways translating time scales between clusters.

The authors verify their assumption that the

synchronisation errors introduced at each hop are

independent and therefore the total path error should

be equal to the sum of independent Gaussian variables

or 𝝈 𝒏. Hence, the experiment they perform reveals a

mean error of 3.68 μs in a 4 hop network.

An interesting scheme proposed by the authors is

that termed “post-facto synchronisation‖. This

technique was born out of a desire to harmonise

synchronisation protocols with the energy constraints

inherent in sensors networks. Rather than continuously

synchronises nodes, it is more efficient to synchronise

them only when an event of interest occurred. Thus,

after an event of interested occurs, synchronisation

rounds commence to determine the offset and skew of

a clock. Subsequently a node can extrapolate backward

to determine its offset when the event occurred. While

it is proposed, its effectiveness is not yet confirmed

through experimentation.

3.2 TPSN Protocol

The Timing-sync protocol for sensor networks (TPSN)

organises a network into a tree hierarchy the root of

which acts as the source of time. Nodes are organised

into levels based at the root and nodes at higher levels

synchronise with nodes at lower levels using the

round-trip synchronisation technique outline earlier.

Construction of the tree hierarchy is termed the

―Level Discovery phase‖. Initiation of this phase is

performed by the root, a node that has been chosen

explicitly because of its capabilities or by some

automatic election process. The root assigns itself a

level of zero in the hierarchy and then constructs a

level_discovery packet containing its identity and level

which it subsequently broadcasts. Reception of a level-

discovery packet by a node allows it to determine its

level and, in addition, initiates the broadcast of its own

level_discovery packet. To deal with special cases such

as when a node fails to determine its level due to

packet collisions or when a new node joins a network

after the level discovery phase, a node may transmit a

level_request packet which provides the same

functionality. Ultimately, this phase constructs a

synchronisation hierarchy allowing the next phase to

commence, that is, the ―Synchronisation Phase‖.

The synchronisation phase is initiated by the root

when it broadcasts a time_sync packet. Reception of

this packet by a node at level 1 triggers a

synchronisation round between that node and the root.

A synchronisation round complies with the round-trip

synchronisation technique described earlier and sees a

sender transmit a synchronisation-pulse packet to a

receiver which replies with an acknowledgement

packet. This procedure allows the sender to collect the

information required to determine its offset relative to

the receiver and, thus, correct its clock.

Synchronisation rounds at lower levels initiate

synchronisation rounds at higher levels since message

exchanges are overheard at higher levels.

Since TPSN uses the round-trip synchronisation

technique it is vulnerable to all the sources of

synchronisation error detailed earlier. To mitigate the

effects of uncertainty associated with the send, access

and receive times of a message, TPSN employs MAC

layer time-stamping allowing the transmission and

reception times of message to be recorded at the

physical layer. In the TPSN study the authors compare

TPSN to RBS with their own test-bed that consists of a

zero hop network of Berkley motes. They claim a 2x

better performance and attribute this to the 2 way

message exchange involved in round-trip

synchronisation that reduces the error. Their

experiments reveal that the distribution of errors

associated with the receive time is indeed Gaussian as

claimed by the authors of RBS but the mean of the

distribution for TPSN is half that of the RBS

distribution. In relation to multi-hop networks, as with

RBS, the errors at each hop are independent and

Gaussian but since TPSN achieves a 2x performance

the worst case n-hop mean will be 2*n more in RBS

compared to TPSN.

With regards to clock skew, TPSN does not employ

regression analysis to determine its value rather it

relies on resynchronisation. Through numerous

experimentations the authors fail to find motes that

have a relative frequency offset of more than 4.75μs/s

and so argue that resynchronisation would be relatively

infrequent in the case of an application that requires an

error bound in the vicinity of tens of milliseconds.

3.3 FTSP

FTSP organises a network into an ad-hoc

synchronisation tree whereby an elected root acts as

the source of time. Synchronisation of nodes is

performed using the unidirectional synchronisation

technique detailed earlier and operates such that

senders distribute time to receivers.

The initial phase of FTSP involves the election of a

root node which acts as the source of time for the

network. The root election process is based on a

simple algorithm whereby the node with the lowest ID

is elected the root. Election of the root is followed by

synchronisation rounds which are initiated by the root

and occur at periodic intervals represented by P. The

choice of P is dictated by the accuracy requirements of

the higher level application since lower values of P

will result in more accurate estimates of the root

node’s time.

Synchronisation messages contain 3 key fields,

namely, the timestamp, rootID and seqNum fields. The

timestamp field represents the sender’s time, the

rootID field represents the address of the root as

recognised by the sender and the seqNum is a sequence

number, incremented solely by the root at the

beginning of each synchronisation round.

The root broadcasts a synchronisation message

which is received by all nodes within range. These

nodes determine their offset and skew, correct their

clock and rebroadcast the message placing their own

time in the timestamp field. Thus, the time is

effectively flooded through the network.

To manage redundant messages and ensure only the

most recent messages are utilised by nodes, FTSP

dictates that a node only accept messages if it contains

a lower rootID than that recognised by the node or if it

has a higher sequence number than the previously

received message. In addition to managing redundant

messages and increasing accuracy this technique also

implicitly forms the resulting ad-hoc synchronisation

structure.

The authors of FTSP describe in detail the

constituents of non-deterministic message delay within

a WSN. In the case where MAC time-stamping is

employed, they decompose the send, access and

receive time further in order to identify the main

culprits of error associated with unidirectional

synchronisation. The description entails the transfer of

an idealised point in the message through the

communication layers. They identify -

 Interrupt handling time – The time between when

a transceiver raises an interrupt and when the

microcontroller handles the interrupt by recording

the time. This is non-deterministic but may be

eliminated using capture registers.

 Encoding time – The time between the raising of

an interrupt by the transceiver indicating the

reception of a byte of data from the

microcontroller and the encoding of this byte into

electromagnetic waves. The encoding time and

Interrupt handling time overlap since a timestamp

must be generated before the message can be

completely encoded. This time is deterministic.

 Decoding time – The time interval between the

decoding of electromagnetic waves into binary

data and the raising of an interrupt to notify the

microcontroller. This is mostly deterministic but

bit synchronisation errors can introduce jitter.

 Byte alignment time – This is a deterministic

delay caused by the differences in the byte

alignment between a sender and receiver.

By deconstructing the core message latencies

further, the authors are able to identify the specific

processes that cause the greatest error. These are the

jitter and encoding times. The FTSP method of

reducing the errors associated with these processes

entails the use of timestamps recorded at each byte

boundary of a message. A sender records these

timestamps at transmission time and normalises them

by taking an appropriate multiple of the nominal byte

transmission time from each one. By taking the

minimum timestamp, those errors associated with the

interrupt handling time are eliminated with high

probability. The minimum timestamp provides a basis

to deduce the interrupt error associated with all other

timestamps, thus, allowing them to be corrected. By

averaging these corrected timestamps, the error

associated with the jitter of encoding can be reduced.

This averaged timestamp is transmitted in the message

and a similar process occurs at the receiver at message

reception time, thus, reducing those errors associated

with the decoding time. The final correction is that

associated with the byte-alignment time. Since this

delay is deterministic it is calculated directly using the

transmission time and bit offset. Ultimately, FTSP

mitigates most of the errors associated with message

delays with the exception of propagation delay. This

can be attributed to the synchronisation technique

employed, or more specifically, the use of a single

message for synchronisation. However, in this

scenario, propagation time contributes to a very small

proportion of error (less than 1 μs for up to 300

meters).

Similar to RBS, FTSP employs regression analysis,

namely, linear regression to estimate the skew of a

node. Knowledge of the skew reduces the

communication overhead required to achieve a desired

level of accuracy. In relation to protocol operation,

each node contains a regression table that holds

reference points related to the last N valid messages

received. A node’s skew value is updated with each

new message reception using the newly received

reference point and those contained in the table. The

protocol also dictates that a node may only broadcast

synchronisation messages when it has at least M

entries in the regression table, thus, ensuring stability

throughout the network.

 RBS TPSN FTSP

Topology Cluster Tree Ad-hoc

Broadcast Yes Yes Yes

Uni-directional No No Yes

Bi- directional No Yes No

Reference

Broadcast
Yes No No

Table 1: Protocol characteristics

4. A DYNAMIC TIME SYNCRONISATION

PROTOCOL

This paper proposes a dynamic time synchronisation

protocol which in contrast to a static time

synchronisation protocol automatically adjusts its

transmission interval (δ) in order to achieve an

application specific level of precision defined by an

error bound (εmax). A static synchronisation protocol

such as FTSP requires initial configuration of the

transmission interval before deployment in order to

meet an application's time precision requirements. This

transmission interval is influenced by the clock

stability of the nodes and the conditions of their

operating environment, as such, for optimal results the

determination of an ideal transmission interval should

be performed via an empirical analysis of the WSN’s

future operating environment. In general, the ambient

temperature of a sensor is the biggest influencer and as

such an environment subject to occasional temperature

fluctuations will require that FTSP use an

unnecessarily high transmission interval resulting in, at

best, sub-optimal energy usage.

In general, with static time synchronisation

algorithms, a node obtains a time message from a

remote node, via a 2-way message exchange or a

single broadcast, and uses this information to calculate

its offset (θ). As explained in section 2.4, a node's

clock has a frequency which differs from the nominal

clock frequency and as such the offset between the two

nodes will increase over time. Thus, a node must

continuously obtain time messages from its reference

node in order to keep its time within a specific

threshold of the reference. If the precision

requirements of an application are quite stringent then

communication overhead between nodes can become

unacceptably high.

The frequency offset or “clock skew” (λ) of a node

from another can be corrected for directly. With two

timestamps a node can estimate λ but, generally, to

increase the accuracy of the estimate, a node obtains

multiple timestamps from its reference and uses

regression analysis to estimate λ. Once the node has an

estimate of its skew relative to its reference it can

calculate θ at any point in time. Ideally, this would

allow a node to be permanently synchronised with

little more than a few message exchanges, however, as

discussed in section 2.4, the frequency of a clock does

not remain constant and tends to change over time

resulting in “clock drift” (φ).

To account for φ a node must continuously receive

time messages from its reference at a rate dictated by

the WSN application's precision requirement and the

WSN operating environment. Subsequently, the node

can correct for changing λ, and thus, produce a more

accurate estimation of θ.

In contrast to a static time synchronisation protocol,

a dynamic time synchronisation protocol accounts for

φ directly. A dynamic time synchronisation protocol

observes the drift of a node and given an application's

precision requirement determines when the node's

clock will cross the acceptable error bound (εmax).

Thus, an optimal value for δ can be determined and the

reference node notified so that a node receives a time

message at the appropriate time to recalculate and

update its changing skew.

OFFSET

SKEW

DRIFT

CALCULATION

 TX

INTERVAL

UPDATE

δ

λ

GLOBALTIME

CALCULATION

θ φ

WSN APPLICATION

ε

δ

REF

NODE

NODE

θ - Offset

λ - Skew

φ - Drift

εMax - Error Bound

δ - TX Interval

Max

Figure 3: Dynamic Synchronisation Algorithm

Operation

Fig. 3 outlines the general flow of control of a

dynamic time synchronisation protocol. A node

wishing to synchronise receives a time message from

its reference node (r) which contains a time stamp Tri.

Two sequential time stamps (Tri, Tri+1) are used to

determine the offset and skew of the node's clock with

respect to the reference clock. A third timestamp, Tri+2,

is used to determine the rate of change of skew, that is,

φ. Knowledge of φ allows one to estimate the point in

time at which the current skew value will lead to an

estimation of the reference time with an error that

exceeds the error bound of the WSN application. The

node must receive a new time message from its

reference node before the aforementioned point in time

so that it can update λ. Thus, the ideal time between

message receptions, that is, the transmission interval of

the reference node, δ, is determined and the reference

node is notified via a notification message.

5. CURRENT STATUS

The aforementioned protocol is currently being

Implemented and tested on the telosb platform. Its

performance, in terms of precision and communication

overhead, relative to current static protocols is being

deduced.

6. CONCLUSIONS AND FUTURE WORK

This paper has provided the reader with a

comprehensive explanation of time synchronisation

and its relevance to the wireless sensor network

domain. A detailed explanation of synchronisation

concepts and techniques has been provided. In

addition, a number of current wireless synchronisation

protocols have been described. This information has

served as a foundation for the description of a dynamic

synchronisation protocol. The latter aims to reduce

message transmissions, and thus energy usage (relative

to similar static protocols) by setting an informed

transmission interval, based on the required

synchronisation level for the network.

References

[1] H. Kopetz, W. Schwabl. Gloab Time in distributed

real-time systems.

[2] J. Elson, L. Girod, D. Estrin, Fine-grained network

time synchronization using reference broadcasts,

In Proceedings of the Fifth Symposium on

Operating Systems Design and Implementation

(OSDI), Boston, MA, December 2002.

[3] IEEE-1588 - Standard for a Precision Clock

Synchro-nization Protocol for Networked

Measurement and Control Systems.

[4] Network Time Protocol (NTP).

[5] S. Ganeriwal, R. Kumar, M.B. Srivastava, Timing-

sync protocol for sensor networks, in Proceedings

of the First ACM Conference on Embedded

Networked Sensor Systems (SenSys), Los Angeles,

CA, November 2003.

[6] M. Maroti, B. Kusy, G. Simon, A. Ledeczi, The

flooding time synchronization protocol, In

Proceedings of the Second ACM Conference on

Embedded Networked Sensor Systems (SenSys),

November 2004.

[7] J. Shannon, H. Melvin, Synchronisation

Challenges for Wireless Networks, Digital

Technologies (DT), November 2009.

