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Abstract — This paper provides the reader with a 

comprehensive description of time synchronization 

within the wireless sensor network domain and details 

an alternative dynamic synchronization protocol 

which could result in reduced energy usage when 

compared to current static protocols.     

1. INTRODUCTION 

Time synchronisation plays a critical role within the 

area of real-time distributed systems. While this has 

always been the case, the continuous development of 

more advanced and diverse systems place an ever-

increasing demand on time synchronisation facilities in 

terms of reliability, precision requirements and energy 

consumption. Advances in integrated circuit design 

and fabrication techniques have given rise to the 

development of miniature computing devices which, 

with respect to size, have relatively sophisticated 

capabilities such as environmental sensing and radio 

communication. This technology in turn has spawned a 

new area in distributed data collection termed wireless 

sensor networks (WSN). While wireless sensor 

networks are nothing more than a number of dispersed 

miniature sensing devices connected via some wireless 

communication protocol, their applications are 

endless.  

With regard to time sensitive WSN applications 

such as industrial automation, fire tracking or 

environmental monitoring applications, data collected 

within the WSN is generally of little use if the point in 

time it was acquired at is unknown. Time is crucial 

when it comes to the analysis of sensor data and in 

order to make accurate judgements or predictions 

about a system as a whole the issue of time 

synchronisation must be dealt with. While data time-

stamping might be viewed as the main motive for time 

synchronisation, some other incentives include the 

time division multiple access (TDMA) and duty 

cycling techniques used by MAC protocols. In relation 

to duty cycling, the miniature computing devices used 

in WSNs are constrained in terms of energy and 

effective synchronous duty cycling techniques such as 

S-MAC and T-MAC provide a means to per long 

battery life. 

In contrast to the internet domain, WSNs place 

extra constraints on time synchronisation techniques 

due to their composite node’s limited processing, 

memory, communication and energy resources. As 

such, time protocols that employ frequent or large 

radio transmissions or complicated statistical 

techniques like those used by NTP are not practical. In 

addition a WSN is tightly coupled to its application 

meaning the application will have a large influence on 

the optimal synchronisation protocol employed. 

At present the Flooding Time Synchronisation 

Protocol (FTSP) is the de-facto time synchronisation 

protocol employed by WSN applications. FTSP uses 

an elegant approach to implicitly build an ad-hoc 

synchronisation tree that can effortlessly adjust to 

changes in network topology. This together with its 

precision capabilities has led to its popularity. 

However, one limitation of FTSP is its un-optimal 

transmission rate. To achieve a specific level of 

accuracy FTSP transmits time messages at a periodic 

pre-calculated rate. In general, the number of message 

transmissions is based on worst case synchronisation 

performance of WSN clocks thus resulting in needless 

transmissions and energy wastage. In this paper we 

propose a dynamic synchronisation protocol that 

dynamically alters the transmission rate of nodes based 

on the clock stability of neighbouring nodes with the 

aim of reducing message transmissions and, thus, 

conserving energy.  

 The remainder of this paper is structured as 

follows. Section 2 outlines core synchronisation 

concepts. Section 3 describes some current static 

synchronisation protocols. Section 4 outlines a 

possible dynamic synchronisation protocol. Section 5 

outlines current work and section 6 concludes the 

paper.       

2. CONCEPTS 

2.1 Sources of Clocks Error 

To understand the primary source of clock error one 

most understand the workings of a clock oscillator. 

Oscillators used to drive computer clocks typically 

come in two varieties, namely, resistor-capacitor (RC) 

oscillators and crystal-controlled oscillators both of 



which generate a sinusoidal output signal with a 

constant frequency. RC oscillators are composed of a 

network of resistors and capacitors, the structure and 

composition of which determines the frequency of the 

output signal. Crystal-controlled oscillators employ a 

crystal as the frequency-determining device within the 

oscillator. Crystals exhibit a characteristic known as 

the piezoelectric effect whereby mechanical forces 

produce electrical charges and vice versa. Some crystal 

substances exhibit this effect to a greater degree than 

others, namely quartz and Rochelle salt, and so they 

are more commonly employed in oscillators, the 

former more so than the latter. 

With respect to time keeping, crystal-controlled 

oscillators provide superior frequency stability when 

compared to their counterparts and, as such, are 

commonly employed as the driving force of a 

computer system’s real time clock while RC oscillators 

are generally used to generate the clock signal in 

integrated circuits. Crystals used in oscillators are cut 

and ground into thin wafers with a specific dimension 

and thickness that allows them to resonate at a desired 

frequency or natural resonant frequency. This 

frequency dictates the maximum resolution of the 

clock it will drive. Subsequently, the crystal is 

mounted in holders within the oscillator circuitry and 

voltage applied to it, the result of which is mechanical 

vibrations which in turn produce an output voltage at 

the crystal’s natural resonant frequency. 

The desired natural resonant frequency of a crystal 

is highly dependent on its manufacturing process. 

Given this fact, it is safe to assume that a crystal’s 

actual frequency may differ from its stated frequency. 

Hence, with respect to a perfect crystal, most crystals 

will have a frequency offset or frequency error. This is 

generally true and in most cases manufactures will 

state the maximum error, which is typically less than 

10 parts per million (ppm). The problem with 

frequency error becomes apparent when one considers 

the timer system the oscillator drives. If a crystal is 

stated as having a frequency of 32,768 Hz then 1 

oscillation and likewise 1 clock tick will be interpreted 

by the system as an interval of 30.5 μs. If however the 

crystal has a frequency offset of -10 ppm then for 

every million oscillations of the crystal an extra 305 μs 

will have passed in real time. While this may not seem 

significant, it results in a time error of just under a 

second a day which is undesirable in many distributed 

applications.  

The frequency error of an oscillator represents an 

important characteristic of a clock, namely, the 

precision. Another important characteristic of a clock 

is its stability. Stability is the ability of the clock to 

sustain a constant frequency over time. To understand 

how the frequency of a clock could change one must 

recognise that the frequency-determining device 

within the oscillator is influenced by physical 

conditions. Temperature and pressure changes cause 

materials to expand and contract and since we stated 

previously that the natural resonant frequency of a 

crystal is determined by its dimensions and thickness 

then it becomes apparent why. Naturally, voltage too 

has an impact but so too do long term processes such 

as material aging.  

There are a number of approaches of ensuring good 

clock stability. The simplest of these is to select a 

crystal’s cut such that it has the lowest temperature 

coefficient for its operating environment. A more 

elaborate approach is to control a clock’s primary 

source of instability, that is, temperature, by placing it 

in a controlled environment such as an oven (termed 

OCXOs). The most effective approach is to replace the 

crystal clock with an atomic clock, albeit a very 

expensive solution. All of these approaches deal with 

the sources of clock error directly and entail altering 

the low level clock hardware. This is not always a 

feasible solution and so a cheap yet effective approach 

is required. A synchronisation algorithm offers just 

that, a software based procedure that alters the clock of 

a host based on a reference clock, thus ensuring two or 

more computing systems adhere to a common 

timescale. 

2.2 Synchronisation Techniques 

The majority of synchronisation protocols share the 

same basic design, that is, a server/reference 

distributes its understanding of the current time to a 

client/host via some communication protocol. The 

most simplistic technique, unidirectional 

synchronisation, which follows this basic design, has a 

host set its clock to the value received in a time 

message from a reference. Since the message latency 

is unknown and not factored in, this technique is only 

sufficient if the message latency from the reference to 

the host is lower than the accuracy requirement of the 

host.  For increased accuracy, one must use round-trip 

synchronisation, (see Fig. 1) whereby a host wishing 

to be synchronised sends a time request to a reference 

node and records the transmission time ti. The 

reference node replies with the reception time of the 

request message and transmission time of its reply 

message, ti+1 and ti+2 respectively. The host node uses 

these three timestamps along with the reception time 

of the reply message, ti+3, to calculate the one-way 

message delay and, thus, determine its clock offset 

from the reference. 
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Figure 1:  Round-trip synchronisation 

 

Round-trip synchronisation operates on the 

assumption that the round-trip times of a message 

between a sender and receiver and vice versa are 

symmetric. This is  unrealistic  for many networks due 

to the non-deterministic delays associated with 

message traversal from a sender to a receiver 

(particularly with multi hops)  and, as such, the result 

of the calculation of a host’s time offset from its 

reference will differ from the true offset leading to a 

clock error. 

A third technique, termed “Reference 

Broadcasting”, takes advantage of the broadcast nature 

of certain networks. It involves three or more nodes, 

all of which lie within the broadcast range of each 

other. One node takes on the role of a reference 

broadcast node and broadcasts a beacon message. 

Each node records the reception time of the beacon 

message and subsequently exchanges its recorded 

timestamp with all other nodes. This approach results 

in the formation of relative time scales whereby each 

node can transform its timescale into that of every 

other node. 

2.3 Sources of Synchronisation Error 

 All of the aforementioned synchronisation techniques 

are susceptible to different sources of synchronisation 

error. To recognise these sources one must understand 

the different components of a synchronisation 

message’s latency which are categorised in [1] and [2]. 

These components are the send time, access time, 

propagation time and receive time. 

The send time represents the time interval between 

the recording of a timestamp by the host and the 

delivery of a synchronisation message, containing that 

timestamp, to the network interface for transmission. 

The time taken to construct the message will be 

influenced by the underlying operating system. For 

instance, the process that constructs the message will 

be subject to some scheduling algorithm which may 

block it numerous times during its operation. 

Furthermore, additional delays may be incurred due to 

system call overheads. 

The access time represents the delay incurred by the 

network interface while waiting to gain access to the 

communication medium. This is dictated by the 

Medium Access Control (MAC) protocol in use. For 

instance, the traditional wired Ethernet and wireless 

Ethernet 802.11 protocols use contention based 

approaches meaning a node may not transmit until the 

channel is clear, thus, high traffic loads will most 

likely lead to large access delays. 

The propagation time represents the time taken for 

a message to traverse the communication link between 

sender and receiver. In a single hop network where the 

sender and receiver are connected directly by the same 

physical medium, the propagation time is dictated by 

the speed of light and as such is deterministic. If, 

however, the sender and receiver are connected via 

multiple network nodes, this time will be non-

deterministic since the message will be subject to 

multiple queue and access delays at each intermediate 

node. 

The receive time represents the time taken for the 

receiver’s network interface to receive the message 

from the communication medium, decode it and notify 

the host application that it has arrived.  

While all of the above delays are comprised of non-

deterministic components, except for propagation time 

in the case of a single-hop network, much of this non-

determinism can be eliminated by time stamping 

message transmission and reception at lower levels in 

the communication hierarchy. The non-deterministic 

delays associated with the send time and access time 

can be almost eliminated by recording the transmission 

time when the network interface gains access to the 

medium and placing this timestamp in the message as 

its been transmitted. Likewise, non-determinism 

associated with the reception time can be significantly 

reduced by having the network interface initiate the 

recording of a timestamp at the beginning of the 

reception of a message. This is possible with many 

modern sensor platforms which are comprised of 

microcontrollers with on board capture/compare 

hardware that captures the value of a timer when 

signalled to do so by a transceiver.  Non-determinism 

associated with propagation time in multi-hop 

networks can be significantly reduced by ensuring 

intermediate nodes incorporate physical layer time 

stamping. This is performed by the Precision time 

Protocol (PTP) Transparent Clocks [3] which use 

specialised PTP time-stamping hardware installed at 

each node in the PTP hierarchy. While these 

approaches are effective at reducing or eliminating 

certain types of non-deterministic delays, they are not 



always practical and, as such, techniques for 

mitigating the effects of these delays must be 

employed. The distinguished Network Time Protocol 

(NTP) [4] is a good example of a protocol that 

employs such techniques. It use data filtering and 

statistical techniques to mitigate errors and as such 

provides a practical alternative to other more elaborate 

approaches.  

2.4 Dealing with Skew and Drift 

As stated previously, a clock typically has a frequency 

that differs from its stated frequency, that is, a 

frequency offset/error which signifies its precision. 

Hence, two clocks generally run at different rates. 

Given this fact, it is obvious that a single 

synchronisation round is inadequate to keep two nodes 

synchronised. As such, nodes must periodically 

exchange time messages at a rate dependent on the 

accuracy requirement of the nodes and their relative 

frequency offset. If a node i wishes to stay 

synchronised within an error bound ε of a reference 

node r, then the interval Δ between synchronisation 

rounds must satisfy:  

 

𝝐𝒊 ≤
∆

𝒇𝒓 − 𝒇𝒊
 

 

If the accuracy requirements of an application are 

quite stringent then the number of message exchanges 

required to keep a node’s clock within the error bound 

may result in significant communication overhead. To 

minimise message exchanges a node can estimate the 

frequency offset between its clock and its reference 

and use this to determine its clock offset at any point in 

the future. The most widely used technique for 

estimating skew entails the use of regression analysis, 

or more specifically, linear regression. By obtaining 

multiple timestamps from a reference, a node can 

define a linear relationship between its clock and the 

reference clock thus allowing it to determine its clock 

offset relative to its reference at any particular point in 

time. This linear relationship is defined by the 

expression:  

 

𝒕𝒓(𝒕) =  𝜶 +  𝜷. 𝒕𝒊(𝒕) 

 

where tr(t) represents the time at the reference node 

r at true time t, ti(t) represents the time at node i at true 

time t, α represents the time offset between the nodes 

at ti=0 and β represents the frequency offset between 

the nodes. 

 

Figure 2: Linear Regression 

 

The accuracy of this relationship is heavily 

influenced by the data that is used to postulate it. As 

such, non-deterministic latencies in a time message’s 

traversal through a network will degrade the accuracy 

of this relationship. To remedy this, data filtering 

techniques can be used such that only credible data is 

used to define the relationship. NTP uses a data 

filtering algorithm that filters data based on the round-

trip time of time messages. Data that originates from 

messages with lower round-trip times is regarded as 

been more accurate since it is more probable that the 

message did not encounter large asymmetric latencies.  

Linear regression provides a simplistic yet effective 

means of defining a relationship between two clocks 

which in turn permits a reduction in the number of 

message exchanges between nodes. Nevertheless, 

linear regression models the relationship as a linear 

one which is an approximation. Referring to the 

previous section detailing the operation of an 

oscillator, it was stated that the frequency-determining 

device, namely the crystal, is susceptible to frequency 

changes caused predominantly by environmental 

factors and the extent of these frequency changes 

indicate the stability of a clock. These frequency 

changes imply that the relationship between two 

clocks is highly complex and cannot be accurately 

modelled as a linear one. Due to the difficulties that lie 

in accurately modelling this relationship and given 

that, in general, frequency changes occur slowly, it’s is 

easier to model this relationship as a linear one over 

short time intervals and continue synchronisation 

rounds at an appropriate interval as long as 

synchronicity is required. 

3. WSN SYNCHRONISATION PROTOCOLS 

3.1 RBS Protocol 

The RBS protocol uses the reference broadcast 

synchronisation technique to synchronise a cluster of 



nodes located within the broadcast range of each other.  

Within a cluster, a particular node is elected the beacon 

node and periodically transmits a beacon message, the 

reception time of which is recorded by all nodes within 

the cluster. These nodes subsequently exchange their 

reception times and this enables them to determine the 

relationship between their clocks and, thus, construct 

relative time scales. Ultimately, a node can transform 

its time scale into that of every other node within the 

cluster.  

Since RBS is only concerned with the reception 

time of messages, it eliminates the two sources of 

synchronisation error dominant with other 

synchronisation techniques, namely, the send time and 

access time. Consequently, the two leading sources of 

error with RBS are the propagation time and the 

receive time of a beacon message. Since nodes are all 

within broadcast range, the delays associated with the 

propagation of a beacon message are dictated by the 

speed of light together with the differences in the 

distance between nodes and are, thus, deterministic. 

While RBS does not directly determine this delay, it is 

considered negligible due to its insignificant 

contribution to the final clock error. The leading source 

of error, thus, becomes the receive time or more 

specifically those non-deterministic delays associated 

with the receive time of a beacon message.  

Assuming the receive error can be reduced by 

having a node timestamp the reception of messages at 

the physical layer, the authors of RBS performed a 

study to characterise the receive error and, thus, verify 

their assumption that the maximum error would 

unlikely be greater than 1 bit time. Their assumption 

was based on the fact that a receiver must be 

synchronised to within 1 bit of a message in order to 

interpret it. The results confirmed their assumption, 

revealing a Gaussian distribution with a mean of 0, a 

standard deviation of 11.1 μs and a maximum of 53.4 

μs, with 1 bit time being equal to approximately 52 μs 

given that the motes’ transceivers operated at 19,200 

baud. These results indicated that the accuracy 

achieved by a basic form of RBS could be improved 

further by having a beacon node broadcast more than 

one beacon message and have nodes average multiple 

offset estimations to determine the final offset relative 

to a neighbour. This procedure, as claimed by the 

authors, resulted in an improved accuracy from 11.1 μs 

to 1.6 μs in the case of an RBS network with 2 

receivers utilising information from 30 beacon 

messages. While certainly an effective approach, it did 

not deal with clock skew and so the protocol was 

further refined by having nodes use multiple messages 

and linear regression to estimate their clock skew 

relative to their neighbours.  

To extend RBS to operate in a multi-hop network 

comprised of nodes not within broadcast range of each 

other, nodes are organised into multiple clusters each 

of which contains one or more nodes that lie within 

one or more neighbour clusters. Thus, these nodes act 

as gateways translating time scales between clusters. 

The authors verify their assumption that the 

synchronisation errors introduced at each hop are 

independent and therefore the total path error should 

be equal to the sum of independent Gaussian variables 

or 𝝈 𝒏. Hence, the experiment they perform reveals a 

mean error of 3.68 μs in a 4 hop network.   

An interesting scheme proposed by the authors is 

that termed “post-facto synchronisation‖. This 

technique was born out of a desire to harmonise 

synchronisation protocols with the energy constraints 

inherent in sensors networks. Rather than continuously 

synchronises nodes, it is more efficient to synchronise 

them only when an event of interest occurred. Thus, 

after an event of interested occurs, synchronisation 

rounds commence to determine the offset and skew of 

a clock. Subsequently a node can extrapolate backward 

to determine its offset when the event occurred. While 

it is proposed, its effectiveness is not yet confirmed 

through experimentation. 

3.2 TPSN Protocol 

The Timing-sync protocol for sensor networks (TPSN) 

organises a network into a tree hierarchy the root of 

which acts as the source of time.  Nodes are organised 

into levels based at the root and nodes at higher levels 

synchronise with nodes at lower levels using the 

round-trip synchronisation technique outline earlier. 

Construction of the tree hierarchy is termed the 

―Level Discovery phase‖. Initiation of this phase is 

performed by the root, a node that has been chosen 

explicitly because of its capabilities or by some 

automatic election process. The root assigns itself a 

level of zero in the hierarchy and then constructs a 

level_discovery packet containing its identity and level 

which it subsequently broadcasts. Reception of a level-

discovery packet by a node allows it to determine its 

level and, in addition, initiates the broadcast of its own 

level_discovery packet. To deal with special cases such 

as when a node fails to determine its level due to 

packet collisions or when a new node joins a network 

after the level discovery phase, a node may transmit a 

level_request packet which provides the same 

functionality. Ultimately, this phase constructs a 

synchronisation hierarchy allowing the next phase to 

commence, that is, the ―Synchronisation Phase‖.  

The synchronisation phase is initiated by the root 

when it broadcasts a time_sync packet. Reception of 

this packet by a node at level 1 triggers a 

synchronisation round between that node and the root. 

A synchronisation round complies with the round-trip 

synchronisation technique described earlier and sees a 

sender transmit a synchronisation-pulse packet to a 

receiver which replies with an acknowledgement 

packet. This procedure allows the sender to collect the 

information required to determine its offset relative to 



the receiver and, thus, correct its clock. 

Synchronisation rounds at lower levels initiate 

synchronisation rounds at higher levels since message 

exchanges are overheard at higher levels.  

Since TPSN uses the round-trip synchronisation 

technique it is vulnerable to all the sources of 

synchronisation error detailed earlier. To mitigate the 

effects of uncertainty associated with the send, access 

and receive times of a message, TPSN employs MAC 

layer time-stamping allowing the transmission and 

reception times of message to be recorded at the 

physical layer. In the TPSN study the authors compare 

TPSN to RBS with their own test-bed that consists of a 

zero hop network of Berkley motes. They claim a 2x 

better performance and attribute this to the 2 way 

message exchange involved in round-trip 

synchronisation that reduces the error. Their 

experiments reveal that the distribution of errors 

associated with the receive time is indeed Gaussian as 

claimed by the authors of RBS but the mean of the 

distribution for TPSN is half that of the RBS 

distribution. In relation to multi-hop networks, as with 

RBS, the errors at each hop are independent and 

Gaussian but since TPSN achieves a 2x performance 

the worst case n-hop mean will be 2*n more in RBS 

compared to TPSN. 

With regards to clock skew, TPSN does not employ 

regression analysis to determine its value rather it 

relies on resynchronisation. Through numerous 

experimentations the authors fail to find motes that 

have a relative frequency offset of more than 4.75μs/s 

and so argue that resynchronisation would be relatively 

infrequent in the case of an application that requires an 

error bound in the vicinity of tens of milliseconds. 

3.3 FTSP 

FTSP organises a network into an ad-hoc 

synchronisation tree whereby an elected root acts as 

the source of time. Synchronisation of nodes is 

performed using the unidirectional synchronisation 

technique detailed earlier and operates such that 

senders distribute time to receivers. 

The initial phase of FTSP involves the election of a 

root node which acts as the source of time for the 

network. The root election process is based on a 

simple algorithm whereby the node with the lowest ID 

is elected the root. Election of the root is followed by 

synchronisation rounds which are initiated by the root 

and occur at periodic intervals represented by P. The 

choice of P is dictated by the accuracy requirements of 

the higher level application since lower values of P 

will result in more accurate estimates of the root 

node’s time.  

Synchronisation messages contain 3 key fields, 

namely, the timestamp, rootID and seqNum fields. The 

timestamp field represents the sender’s time, the 

rootID field represents the address of the root as 

recognised by the sender and the seqNum is a sequence 

number, incremented solely by the root at the 

beginning of each synchronisation round. 

The root broadcasts a synchronisation message 

which is received by all nodes within range. These 

nodes determine their offset and skew, correct their 

clock and rebroadcast the message placing their own 

time in the timestamp field. Thus, the time is 

effectively flooded through the network.   

To manage redundant messages and ensure only the 

most recent messages are utilised by nodes, FTSP 

dictates that a node only accept messages if it contains 

a lower rootID than that recognised by the node or if it 

has a higher sequence number than the previously 

received message. In addition to managing redundant 

messages and increasing accuracy this technique also 

implicitly forms the resulting ad-hoc synchronisation 

structure.     

The authors of FTSP describe in detail the 

constituents of non-deterministic message delay within 

a WSN. In the case where MAC time-stamping is 

employed, they decompose the send, access and 

receive time further in order to identify the main 

culprits of error associated with unidirectional 

synchronisation. The description entails the transfer of 

an idealised point in the message through the 

communication layers. They identify - 

 Interrupt handling time – The time between when 

a transceiver raises an interrupt and when the 

microcontroller handles the interrupt by recording 

the time. This is non-deterministic but may be 

eliminated using capture registers. 

 Encoding time – The time between the raising of 

an interrupt by the transceiver indicating the 

reception of a byte of data from the 

microcontroller and the encoding of this byte into 

electromagnetic waves. The encoding time and 

Interrupt handling time overlap since a timestamp 

must be generated before the message can be 

completely encoded. This time is deterministic. 

 Decoding time – The time interval between the 

decoding of electromagnetic waves into binary 

data and the raising of an interrupt to notify the 

microcontroller. This is mostly deterministic but 

bit synchronisation errors can introduce jitter. 

 Byte alignment time – This is a deterministic 

delay caused by the differences in the byte 

alignment between a sender and receiver. 

 

By deconstructing the core message latencies 

further, the authors are able to identify the specific 

processes that cause the greatest error. These are the 

jitter and encoding times. The FTSP method of 

reducing the errors associated with these processes 

entails the use of timestamps recorded at each byte 

boundary of a message. A sender records these 



timestamps at transmission time and normalises them 

by taking an appropriate multiple of the nominal byte 

transmission time from each one. By taking the 

minimum timestamp, those errors associated with the 

interrupt handling time are eliminated with high 

probability. The minimum timestamp provides a basis 

to deduce the interrupt error associated with all other 

timestamps, thus, allowing them to be corrected. By 

averaging these corrected timestamps, the error 

associated with the jitter of encoding can be reduced. 

This averaged timestamp is transmitted in the message 

and a similar process occurs at the receiver at message 

reception time, thus, reducing those errors associated 

with the decoding time. The final correction is that 

associated with the byte-alignment time. Since this 

delay is deterministic it is calculated directly using the 

transmission time and bit offset. Ultimately, FTSP 

mitigates most of the errors associated with message 

delays with the exception of propagation delay. This 

can be attributed to the synchronisation technique 

employed, or more specifically, the use of a single 

message for synchronisation. However, in this 

scenario, propagation time contributes to a very small 

proportion of error (less than 1 μs for up to 300 

meters).    

Similar to RBS, FTSP employs regression analysis, 

namely, linear regression to estimate the skew of a 

node. Knowledge of the skew reduces the 

communication overhead required to achieve a desired 

level of accuracy. In relation to protocol operation, 

each node contains a regression table that holds 

reference points related to the last N valid messages 

received. A node’s skew value is updated with each 

new message reception using the newly received 

reference point and those contained in the table. The 

protocol also dictates that a node may only broadcast 

synchronisation messages when it has at least M 

entries in the regression table, thus, ensuring stability 

throughout the network.  

    

 RBS TPSN FTSP 

Topology Cluster Tree Ad-hoc 

Broadcast Yes Yes Yes 

Uni-directional No No Yes 

Bi- directional No Yes No 

Reference 

Broadcast 
Yes No No 

Table 1: Protocol characteristics 

        

4. A DYNAMIC TIME SYNCRONISATION 

PROTOCOL 

This paper proposes a dynamic time synchronisation 

protocol which in contrast to a static time 

synchronisation protocol automatically adjusts its 

transmission interval (δ) in order to achieve an 

application specific level of precision defined by an 

error bound (εmax). A static synchronisation protocol 

such as FTSP requires initial configuration of the 

transmission interval before deployment in order to 

meet an application's time precision requirements. This 

transmission interval is influenced by the clock 

stability of the nodes and the conditions of their 

operating environment, as such, for optimal results the 

determination of an ideal transmission interval should 

be performed via an empirical analysis of the WSN’s 

future operating environment. In general, the ambient 

temperature of a sensor is the biggest influencer and as 

such an environment subject to occasional temperature 

fluctuations will require that FTSP use an 

unnecessarily high transmission interval resulting in, at 

best, sub-optimal energy usage. 

In general, with static time synchronisation 

algorithms, a node obtains a time message from a 

remote node, via a 2-way message exchange or a 

single broadcast, and uses this information to calculate 

its offset (θ). As explained in section 2.4, a node's 

clock has a frequency which differs from the nominal 

clock frequency and as such the offset between the two 

nodes will increase over time. Thus, a node must 

continuously obtain time messages from its reference 

node in order to keep its time within a specific 

threshold of the reference. If the precision 

requirements of an application are quite stringent then 

communication overhead between nodes can become 

unacceptably high.  

The frequency offset or “clock skew” (λ) of a node 

from another can be corrected for directly. With two 

timestamps a node can estimate λ but, generally, to 

increase the accuracy of the estimate, a node obtains 

multiple timestamps from its reference and uses 

regression analysis to estimate λ. Once the node has an 

estimate of its skew relative to its reference it can 

calculate θ at any point in time. Ideally, this would 

allow a node to be permanently synchronised with 

little more than a few message exchanges, however, as 

discussed in section 2.4, the frequency of a clock does 

not remain constant and tends to change over time 

resulting in “clock drift” (φ).  

To account for φ a node must continuously receive 

time messages from its reference at a rate dictated by 

the WSN application's precision requirement and the 

WSN operating environment. Subsequently, the node 

can correct for changing λ, and thus, produce a more 

accurate estimation of θ. 

In contrast to a static time synchronisation protocol, 

a dynamic time synchronisation protocol accounts for 



φ directly. A dynamic time synchronisation protocol 

observes the drift of a node and given an application's 

precision requirement determines when the node's 

clock will cross the acceptable error bound (εmax). 

Thus, an optimal value for δ can be determined and the 

reference node notified so that a node receives a time 

message at the appropriate time to recalculate and 

update its changing skew. 
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Figure 3: Dynamic Synchronisation Algorithm 

Operation 

 

Fig. 3 outlines the general flow of control of a 

dynamic time synchronisation protocol. A node 

wishing to synchronise receives a time message from 

its reference node (r) which contains a time stamp Tri. 

Two sequential time stamps (Tri, Tri+1) are used to 

determine the offset and skew of the node's clock with 

respect to the reference clock. A third timestamp, Tri+2, 

is used to determine the rate of change of skew, that is, 

φ. Knowledge of φ allows one to estimate the point in 

time at which the current skew value will lead to an 

estimation of the reference time with an error that 

exceeds the error bound of the WSN application. The 

node must receive a new time message from its 

reference node before the aforementioned point in time 

so that it can update λ. Thus, the ideal time between 

message receptions, that is, the transmission interval of 

the reference node, δ, is determined and the reference 

node is notified via a notification message. 

5. CURRENT STATUS 

The aforementioned protocol is currently being 

Implemented and tested on the telosb platform. Its 

performance, in terms of precision and communication 

overhead, relative to current static protocols is being 

deduced. 

6. CONCLUSIONS AND FUTURE WORK 

This paper has provided the reader with a 

comprehensive explanation of time synchronisation 

and its relevance to the wireless sensor network 

domain. A detailed explanation of synchronisation 

concepts and techniques has been provided. In 

addition, a number of current wireless synchronisation 

protocols have been described. This information has 

served as a foundation for the description of a dynamic 

synchronisation protocol. The latter aims to reduce 

message transmissions, and thus energy usage (relative 

to similar static protocols)  by setting an informed 

transmission interval, based on the required 

synchronisation level for the network.   
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